
LETTER FROM THE EDITOR

In the first article of this issue, Kenneth Williams recalls some history of Liouville’s
work on quadratic forms. Then, Williams uses some results of Gauss to show that
Liouville’s work can be proved from a result of Jacobi’s.

Gauss makes an appearance in the second article of this issue, too. Easter this year
is on April 21. In 1800, Gauss wrote about calculating the Easter date and, in this
issue, Donald Teets summarizes and explains Gauss’ calculation of the Easter date, as
well as Gauss’ 1816 correction of an error in his calculation. Somewhere in there is
a joke on Easter bonnets and the Gauss–Bonnet theorem. Also, this month’s cover art
is motivated by Teets’ article and contains a grid of possible Easter dates. Read more
about it on the inside front cover.

If you only have candles to heat your bedroom, how should you position the candles
to warm the room as efficiently as possible? What if your room is a torus? Surpris-
ingly, in their article, Florian Pausinger and Stefan Steinerberger use number theory to
answer the question.

The Gion shrine problem is a geometry problem from eighteenth-century Japan. In
their article, David Clark, J. Arias de Reyna, and Noam Elkies provide a new solution
to the problem that, like the classical Japanese solution, involves solving a degree-ten
polynomial. However, their polynomial is easier to write down. In their analysis, they
use a result of Fermat to show that no rational solution to the Gion shrine problem
exists.

I have always enjoyed the combinatorics of determining the number of nonnegative
integer solutions to equations like x1 + · · · + xn = k with inequality constraints on the
xi . Hideo Hirose determines the number of solutions to x1 + · · · + xn ≡ k (mod p)

using probability theory.
In the next article, Edwin O’Shea examines divisibility tests, the algorithms used to

determine if one integer is divisible by another. He uses only basic divisibility proper-
ties to unify previously examined tests based on trimming and summing.

Weak induction and strong induction are two well-known proof techniques for state-
ments indexed by the natural numbers. What about real induction? In the final article,
Pete Clark provides an instructor’s guide to real induction, a proof technique, that is,
applicable to statements indexed by an interval on the real line. Clark applies real
induction to prove basic results in real analysis and topology.

Throughout this issue are three proofs without words. In the first, Günhan Caglayan
provides an identity on the difference between triangular numbers. In the second, Rex
Wu considers arctangent identities involving 2 and the golden ratio. In the third, Steve
Butler shows a relationship between independent sets in grid graphs and the tiling
of Aztec diamonds. There are also two Math Bites in this issue: Tristen Pankake-
Sieminski and Raymond Viglione provide a math bite on averages of averages and
Konstantinos Gaitanas uses the discriminant of a quadratic equation to prove the root-
mean square–arithmetic mean inequality.

As with every issue of 2019, David Nacin provides a Tribus puzzle. And, as with
every issue of the Magazine, the Problems section includes new problems to get
you thinking and the Reviews section provides summaries of some recent articles and
books.

Michael A. Jones, Editor
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The French mathematician Joseph Liouville (1809–1882) made major contributions to
a great many different areas of mathematics, including complex analysis, differential
geometry, mathematical physics and the theory of integration in finite terms. At least
six theorems are named after him [13, p. vii]. He is particularly known for Liouville’s
theorem (a bounded entire function is a constant) and for Liouville numbers (the first
known examples of transcendental numbers).

At the age of 47, Liouville began his research in the theory of numbers which was
to occupy him for the rest of his life. Liouville’s objective was to give some basic ele-
mentary principles from which arithmetic formulas proved by his colleagues Jacobi,
Hermite, Kronecker and others would follow. There is no doubt that he discovered such
underlying principles from which came numerous results. Unfortunately, probably
because of the pressure on his time from his administrative responsibilities, Liouville
published his results, almost always without proof, in a series of eighteen articles in
his journal Journal de Mathématiques Pures et Appliquées and the application of them
to quadratic forms in a series of ninety notes in the same journal (as one of the referees
of this article put it succinctly in his/her report “without editorial interference”). Later,
other mathematicians proved Liouville’s arithmetic formulas though not always in the
way Liouville had in mind. For example Pepin [14] used trigonometric identities to
prove Liouville-type arithmetic identities from which he deduced many of Liouville’s
formulas involving quadratic forms. Even today we cannot be absolutely sure what
Liouville’s arithmetic methods were.

Liouville’s secrecy concerning his methods resulted in him not receiving the recog-
nition he deserved for his work on quadratic forms, even though he was a pioneer
in this area. Liouville’s interest was in determining the representation numbers of
quadratic forms c1x

2
1 + c2x

2
2 + c3x

2
3 + c4x

2
4 , where c1, c2, c3, c4 are positive integers;

that is, he sought formulas for

N(c1, c2, c3, c4; n) = (1)

|{(x1,x2, x3, x4) ∈ Z
4 | n = c1x

2
1 + c2x

2
2 + c3x

2
3 + c4x

2
4}|,

valid for every n ∈ N. When n = 0 the only solution to 0 = c1x
2
1 + c2x

2
2 + c3x

2
3 +

c4x
2
4 is x1 = x2 = x3 = x4 = 0 because c1, c2, c3, c4 are all positive, so

N(c1, c2, c3, c4; 0) = 1. Perhaps Liouville was motivated by one of the consequences
of Jacobi’s monumental work [7] of 1829 on elliptic and theta functions, namely that
the number of representations of a positive integer n as a sum of four squares of
integers is 8 times the sum of the positive divisors of n which are not multiples of 4,
see [5, 6], that is

N(1, 1, 1, 1; n) = 8a4(n), where ak(n) =
∑
d|n
k�d

d, for k ∈ N. (2)
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If m is a positive rational number but not a positive integer we define ak(m) = 0,
so that for example a4(n/8) = 0 for every n ∈ N which is not a multiple of 8. If
k, l, n ∈ N, by splitting the sum akl(n) into two sums according to whether a divisor d

of n is a multiple of k or not, we deduce that

akl(n) = kal(n/k) + ak(n),

so that we have the useful formula

al(n/k) = 1

k
akl(n) − 1

k
ak(n). (3)

The purely arithmetical nature of Jacobi’s formula in equation (2) perhaps sug-
gested to Liouville that he look for other quadratic forms c1x

2
1 + c2x

2
2 + c3x

2
3 + c4x

2
4

(c1, c2, c3, c4 ∈ N) for which the representation numbers defined in equation (1) can
be expressed in a purely arithmetic way and to give proofs of them based on arithmetic
principles. Today the theory of modular forms explains when this is possible and when
it is not.

How did Jacobi’s arithmetic formula of equation (2) for N(1, 1, 1, 1; n) (n ∈ N)
follow from Jacobi’s analytic work? What Jacobi proved was the identity

(1 + 2x + 2x4 + 2x9 + · · · )4 = 1 + 8

(
x

1 − x
+ 2x2

1 + x2
+ 3x3

1 − x3
+ · · ·

)
. (4)

The reader will find this identity (with x replaced by q) in Jacobi’s Gesammelte Werke
[8, Vol. 1, p. 239]. The two series in equation (4) converge for all complex numbers x

satisfying |x| < 1, as do all the series considered in this article. The left-hand side of
equation (4) is( ∞∑

m=−∞
xm2

)4

=
∑

(m1,m2,m3,m4)∈Z4

xm2
1+m2

2+m2
3+m2

4 =
∞∑

n=0

∑
(m1,m2,m3,m4)∈Z4

m2
1+m2

2+m2
3+m2

4=n

xn,

so that ( ∞∑
m=−∞

xm2

)4

=
∞∑

n=0

N(1, 1, 1, 1; n)xn, (5)

proving that
(∑∞

m=−∞ xm2
)4

is the generating function of the N(1, 1, 1, 1; n). The

right-hand side of equation (4) can be shown to be

1 + 8
∞∑

n=1

∑
d|n
4�d

dxn = 1 + 8
∞∑

n=1

a4(n)xn

using the well-known geometric series

x

1 + x
=

∞∑
n=1

(−1)n−1xn.

The reader can find the details of this calculation in [3, p. 61]. Equating coefficients of
xn for n ∈ N, we obtain the formula in equation (2).
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It is perhaps not so well-known that there are other forms c1x
2
1 + c2x

2
2 + c3x

2
3 + c4x

2
4

whose representation numbers can be expressed in terms of arithmetic sums of the type
ak(n) for certain values of k ∈ N. We give five such forms for which this is the case.
Formulas for the representation numbers of these forms were given by Liouville [9–12]
in the 1860s. Many proofs of these formulas are known, see [1] for some references.
The nature of these proofs varies from proofs using elementary methods to proofs
using theta function identities to modern proofs using modular forms. Our contribution
will be to show that they can all be proved in a simple systematic way from Jacobi’s
theorem, expressed in the form with equations (2) and (5) combined,( ∞∑

m=−∞
xm2

)4

= 1 +
∞∑

n=1

8a4(n)xn, (6)

by using some results of Gauss.

Liouville’s formulas

For n ∈ N,

N(1, 1, 2, 2; n) = 2a2(n) − 2a4(n) + 4a8(n),

N(1, 2, 2, 4; n) = a2(n) − a8(n) + 2a16(n),

N(1, 1, 1, 4; n) = 2α(n)a2(n) + 5a4(n) − 3a8(n) + 2a16(n),

N(1, 1, 4, 4; n) = (2α(n) + 1)a2(n) − a8(n) + 2a16(n),

N(1, 4, 4, 4; n) = (α(n) + 3/2)a2(n) − (5/2)a4(n) + 2a16(n),

where

α(n) =
{

0 if n ≡ 0 (mod 2),

(−1)(n−1)/2 if n ≡ 1 (mod 2).
(7)

We now describe some results of Gauss that we shall use. Gauss [4, p. 465] con-
sidered the infinite series

P(x) = 1 + 2x + 2x4 + · · · and Q(x) = 1 − 2x + 2x4 − · · · , (8)

and found some of their properties. Clearly Q(−x) = P(x). The functions P and Q

are now called theta functions and the variable x is often written as q but we will use
Gauss’ notation.

Gauss’ relationships involving P(x) and Q(x)

Gauss proved among others the following relationships, see [4, formulas (13), (16),
(19), (20, (21); pp. 466–467]. For |x| < 1,

P(x) + Q(x) = 2P(x4), (9)

P 2(x) + Q2(x) = 2P 2(x2), (10)

P(x)Q(x) = Q2(x2), (11)

P(x) + iQ(x) = (1 + i)Q(ix), (12)

P(x) − iQ(x) = (1 − i)P (ix). (13)
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Formulas (9), (12) and (13) are easily proved by calculating P(x) + Q(x), P(x) +
iQ(x) and P(x) − iQ(x) from the series in equation (8). For completeness we prove
(10) and (11). First we prove (10). We set, for n ∈ N ∪ {0},

s(n) = |{(x, y) ∈ Z
2 | n = x2 + y2}|,

so that s(0) = 1. Then

P 2(x) =
( ∞∑

m=−∞
xm2

)2

=
∑

(m1,m2)∈Z2

xm2
1+m2

2 =
∞∑

n=0

∑
(m1,m2)∈Z2

m2
1+m2

2=n

xn =
∞∑

n=0

s(n)xn.

If a and b are integers such that a2 + b2 = n, then (a + b)2 + (a − b)2 = 2n. Con-
versely, if c and d are integers such that c2 + d2 = 2n, then c and d have the same
parity, so we can define integers a and b by a = (c + d)/2 and b = (c − d)/2, so that

a2 + b2 =
(

c + d

2

)2

+
(

c − d

2

)2

= c2 + d2

2
= n.

Thus there is a bijection between (a, b) ∈ Z
2 with a2 + b2 = n and (c, d) ∈ Z

2 with
c2 + d2 = 2n. Hence s(n) = s(2n). Then

P 2(x) + Q2(x) = P 2(x) + P 2(−x) =
∞∑

n=0

s(n)xn +
∞∑

n=0

s(n)(−x)n

= 2
∞∑

n=0

s(2n)x2n = 2
∞∑

n=0

s(n)x2n = 2P 2(x2),

which is equation (10). We now prove equation (11). By appealing to equations (9)
and (10), we have

4P 2(x4) = (P (x) + Q(x))2 = P 2(x) + Q2(x) + 2P(x)Q(x)

= 2P 2(x2) + 2P(x)Q(x) = 4P 2(x4) − 2Q2(x2) + 2P(x)Q(x),

which gives equation (11).
By exactly the same kind of calculation as the one we did to show that P 4(x)

is the generating function of N(1, 1, 1, 1; n) for n ∈ N ∪ {0}, we find that the gen-
erating function of N(c1, c2, c3, c4; n) is P(xc1)P (xc2)P (xc3)P (xc4). Thus in order
to find the generating functions of N(1, 1, 2, 2; n), N(1, 2, 2, 4; n), N(1, 1, 1, 4; n),
N(1, 1, 4, 4; n) and N(1, 4, 4, 4; n) we must find the power series expansions in
powers of x of P 2(x)P 2(x2), P (x)P 2(x2)P (x4), P 3(x)P (x4), P 2(x)P 2(x4) and
P(x)P 3(x4), respectively. We begin by using Gauss’ formulas to replace each occur-
rence of P 2(x2) by 1

2P
2(x) + 1

2Q
2(x) and each occurrence of P(x4) by 1

2P(x) +
1
2Q(x) in each of these five products to show that each of them can be expressed as
a rational linear combination of P 4(x), P 3(x)Q(x), P 2(x)Q2(x), P(x)Q3(x) and
Q4(x). Although Q4(x) does not actually appear in these formulas it is convenient to
treat it along with the others as it will be used later in this article. We obtain

P 2(x)P 2(x2) = 1

2
P 4(x) + 1

2
P 2(x)Q2(x),

P (x)P 2(x2)P (x4) = 1

4
P 4(x) + 1

4
P 3(x)Q(x) + 1

4
P 2(x)Q2(x) + 1

4
P(x)Q3(x),
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P 3(x)P (x4) = 1

2
P 4(x) + 1

2
P 3(x)Q(x),

P 2(x)P 2(x4) = 1

4
P 4(x) + 1

2
P 3(x)Q(x) + 1

4
P 2(x)Q2(x), and

P(x)P 3(x4) = 1

8
P 4(x) + 3

8
P 3(x)Q(x) + 3

8
P 2(x)Q2(x) + 1

8
P(x)Q3(x).

To find the power series expansions of P 2(x)P 2(x2), P(x)P 2(x2)P (x4), P 3(x)

P (x4), P 2(x)P 2(x4), and P(x)P 3(x4), we must therefore determine the power series
expansions of P 4−l(x)Ql(x) for l = 0, 1, 2, 3, 4. These are given in the following
theorem. The first of these is Jacobi’s theorem and we deduce the remaining formulas
from it.

Theorem.

P 4(x) = 1 +
∞∑

n=1

8a4(n)xn, (14)

P 3(x)Q(x) = 1 +
∞∑

n=1

(4a16(n) − 6a8(n) + 2a4(n) + 4α(n)a2(n))xn, (15)

P 2(x)Q2(x) = 1 +
∞∑

n=1

(8a8(n) − 12a4(n) + 4a2(n))xn, (16)

P(x)Q3(x) = 1 +
∞∑

n=1

(4a16(n) − 6a8(n) + 2a4(n) − 4α(n)a2(n))xn, (17)

Q4(x) = 1 +
∞∑

n=1

(16a4(n) − 24a2(n))xn, (18)

where ak(n) is defined in equation (2) and α(n) in equation (7).

Proof. Equation (14) is Jacobi’s theorem from equation (6). It is stated as part of this
theorem for convenience and completeness.

Now we prove equation (18). Replacing x by −x in equation (14), we obtain

Q4(x) = P 4(−x) = 1 +
∞∑

n=1

8(−1)na4(n)xn.

We now show that

(−1)na4(n) = 2a4(n) − 3a2(n) (19)

to complete the proof. If n is odd then a4(n) = a2(n) and equation (19) follows. If n is
even, from (3) with (k, l) = (2, 2), we have

a2(n/2) = 1

2
a4(n) − 1

2
a2(n). (20)

As n is even we have a2(n/2) = a2(n) so a4(n) = 3a2(n) and equation (19) follows.
Next we prove equation (16). By equations (11) and (18) we have

P 2(x)Q2(x) = Q4(x2) = 1 +
∞∑

n=1

(16a4(n/2) − 24a2(n/2))xn. (21)
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By (3) with (k, l) = (2, 4) we have

a4(n/2) = 1

2
a8(n) − 1

2
a2(n). (22)

Using equations (20) and (22) in equation (21) we obtain equation (16).
Finally, we prove equations (15) and (17). First we determine the power series

expansion of 1
2 (P

3(x)Q(x) + P(x)Q3(x)). Appealing to Gauss’ formulas in equa-
tions (10) and (11), we deduce

1

2
(P 3(x)Q(x) + P(x)Q3(x)) = 1

2
(P 2(x) + Q2(x))P (x)Q(x)

= P 2(x2)Q2(x2) = Q4(x4).

From equation (18) of the theorem, with x replaced by x4, we obtain

Q4(x4) = 1 +
∞∑

n=1

(16a4(n/4) − 24a2(n/4))xn. (23)

Taking (k, l) = (4, 2) and (4, 4) in (3), we obtain

a2(n/4) = 1

4
a8(n) − 1

4
a4(n), a4(n/4) = 1

4
a16(n) − 1

4
a4(n). (24)

Using equation (24) in equation (23), we deduce

1

2
(P 3(x)Q(x) + P(x)Q3(x)) = 1 +

∞∑
n=1

(4a16(n) − 6a8(n) + 2a4(n))xn. (25)

Next we determine the power series expansion of 1
2 (P

3(x)Q(x) − P(x)Q3(x)).
Factoring we have

P 3(x)Q(x) − P(x)Q3(x) = (P (x)Q(x))(P (x) + Q(x))(P (x) − Q(x)). (26)

We express each of the bracketed factors on the right-hand side of equation (26) in
terms of P(ix) and Q(ix). By equations (10) and (11), we have

P(x)Q(x) = Q2(x2) = P 2(−x2) = 1

2
(P 2(ix) + Q2(ix)).

From equation (9) we see that

P(x) + Q(x) = 2P(x4) = P(ix) + Q(ix).

From equations (12) and (13) we have

P(x) − Q(x) = −i(P (ix) − Q(ix)).

Thus the right-hand side of equation (26) is

−i

2
(P 4(ix) − Q4(ix)) = 1

2i
(P 4(ix) − P 4(−ix)) =

∞∑
n=1

8α(n)a4(n)xn,
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where we appealed to equation (14) for the power series expansions of P 4(ix) and
P 4(−ix). Thus

1

2
(P 3(x)Q(x) − P(x)Q3(x)) =

∞∑
n=1

4α(n)a4(n)xn. (27)

Adding and subtracting equations (25) and (27), as α(n)a4(n) = α(n)a2(n), we obtain
equations (15) and (17). �

Proof of Liouville’s formulas

Liouville’s formulas follow by putting the power series expansions of P 4−j (x)Qj(x)

(j = 0, 1, 2, 3, 4) given in the theorem into the formulas expressing the five prod-
ucts P 2(x)P 2(x2), . . . , P (x)P 3(x4) as linear combinations of P 4−j (x)Qj(x) (j =
0, 1, 2, 3, 4), and then equating the coefficients of xn (n ∈ N). We just give the details
for N(1, 1, 1, 4; n). We have

∞∑
n=0

N(1, 1, 1, 4; n)xn = P 3(x)P (x4) = 1

2
P 4(x) + 1

2
P 3(x)Q(x)

= 1

2

(
1 +

∞∑
n=1

8a4(n)xn

)

+ 1

2

(
1 +

∞∑
n=1

(4a16(n) − 6a8(n) + 2a4(n) + 4α(n)a2(n))xn

)

= 1 +
∞∑

n=1

(2α(n)a2(n) + 5a4(n) − 3a8(n) + 2a16(n))xn,

and equating coefficients of xn for n ∈ N, we obtain the third of Liouville’s five for-
mulas. The remaining four formulas follow similarly.

The ideas of this article can be extended to express the representation numbers of
the ten forms x2

1 + c2x
2
2 + c3x

2
3 + c4x

2
4 for (c2, c3, c4) = (1, 1, 2), (1, 1, 8), (1, 2, 4),

(1, 4, 8), (2, 2, 2), (2, 2, 8), (2, 4, 4), (2, 8, 8), (4, 4, 8) and (8, 8, 8) in terms of the
arithmetic sums

∑
d|n

d≡j (mod 8)

d for j = 1, 3, 5, 7. The details are more complicated than

for the forms treated in this article. Proofs of Liouville’s formulas for the representation
numbers of these ten forms can be found in [2, Theorems 5.1–5.10].

Acknowledgments. The author thanks the referees for their very valuable suggestions
which enabled him to improve the presentation of this article.
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Summary. We show how Liouville’s formulas for the number of representations of a positive integer by the
forms x2

1 + x2
2 + 2x2

3 + 2x2
4 , x2

1 + 2x2
2 + 2x2

3 + 4x2
4 , x2

1 + x2
2 + x2

3 + 4x2
4 , x2

1 + x2
2 + 4x2

3 + 4x2
4 , and x2

1 + 4x2
2 +

4x2
3 + 4x2

4 follow in a simple systematic way from a beautiful identity of Jacobi using some elementary relation-
ships between the infinite series P(x) = 1 + 2x + 2x4 + 2x9 + · · · and Q(x) = 1 − 2x + 2x4 − 2x9 + · · · given
by Gauss.
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In the article “Berechnung des Osterfestes (Calculation of the Easter Date)” [4] that
appeared in August, 1800, Carl Friedrich Gauss offers an extraordinarily simple set of
arithmetic rules for calculating the Easter date in any given year. He illustrates it with
an example, concluding that “so it is, for example, for the year 4763 Easter is . . . the
7th of April . . . ” This article will take a close look at Gauss’s algorithm and will offer
a glimpse at the history surrounding it.

There is a vast literature on the subject of Easter and the Easter date (see the ref-
erences in [1], for example), so why another paper on this topic? First and foremost,
this paper is pure Gauss: his method and his comments, offering readers a glimpse
into his original work. Second, Gauss’s algorithm, and variations thereof, are widely
reproduced in the literature of the subject just as Gauss presented it; that is, with little
or no explanation whatsoever. (For example, see the Easter date algorithm in the U. S.
Naval Observatory’s Explanatory Supplement to the Astronomical Almanac [9].) The
ten modular arithmetic formulas appearing in the algorithm are simple to implement,
yet so inscrutable that they beg further explanation: where do they come from, and
why does the algorithm work? Third, frequent reference is made to an error in Gauss’s
algorithm, suggesting that his method should be discounted entirely. We shall see that
Gauss is undeserving of much of the criticism surrounding this error.

All in all, despite the immense number of papers on the subject of the Easter date
that have appeared through the centuries, the elegance and simplicity of Gauss’s algo-
rithm are not widely understood. And surprisingly, this very popular topic seems never
to have been addressed in a century of MAA journals.

Gauss was 23 years old and struggling to find an appointment to support himself
when “Berechnung des Osterfestes” was published. His biographer G. W. Dunnington
[3] writes that “according to his own story his mother could not tell him the exact
day on which he was born; she only knew that it was a Wednesday, eight days before
Ascension Day. That started him on his search for the formula.” (Note: Ascension Day
is the Thursday 40 days after Easter, counting the latter as day one. In Gauss’s birth
year 1777, Easter fell on March 30, Ascension Day was Thursday, May 8, so Gauss
calculated his birthday as April 30.)

Gauss achieved fame in the fields of number theory and astronomy, and the Easter
date computation is a mix of the two. But each of these appears in a trivial way; the
real complexity of the problem stems from the byzantine rules upon which the Easter
date is based. In Gauss’s own words, “the intention of this article is not to discuss the
standard method of computing the Easter date, which one can find in any manual of
mathematical chronology, and which is easy enough, once one knows the meaning and
practice of the usual vocabulary of the profession, golden number, epact, Easter limit,
solar cycle, and Dominical letter, and has the necessary assistance tables available;
rather than this task, to give a means of help, independent and clear, a pure analytical
solution based on the simplest calculations and operations.”

Math. Mag. 92 (2019) 91–98. doi:10.1080/0025570X.2019.1549889 c© Mathematical Association of America
MSC: Primary 01A55
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Definition of Easter

A popular definition of Easter is “the Sunday after the first full moon on or after the
vernal equinox.” But this definition comes with certain difficulties; for example, a full
moon may occur just before midnight in one time zone and just after in another, thus
on different days. In the Catholic Encyclopedia [7], we find the following: “Seeing,
therefore, that astronomical accuracy must at some point give way to convenience . . . ,
the Church has drawn up a lunar calendar which maintains as close a relation with the
astronomical moons as is practicable . . . .”

Quite simply, the Church uses an idealized, formulaic full moon date rather than
a true astronomical full moon to determine when Easter falls. Likewise, the idealized
vernal equinox March 21 is used instead of the true equinox, which may or may not
occur on that date. The first of these formulaic full moons occurring on or after March
21 is known as the paschal full moon, and Easter is properly defined as the Sunday
immediately after the paschal full moon (PFM). Thus, determining the date of the
PFM in a given year is at the heart of the Easter algorithm. In order to make use of
his original symbols, it will be convenient to introduce Gauss’s algorithm before we
address the PFM problem.

Gauss’s Easter algorithm

Here is Gauss’s Easter algorithm in his own words and symbols [4]:

Complete general rules for the calculation of the Easter date
for the Julian, as well as the Gregorian Calendar.

If the result of the division of by is the remainder

the year number 19 a

the year number 4 b

the year number 7 c

the number 19a + M 30 d

the number 2b + 4c + 6d + N 7 e

Then Easter falls on the (22 + d + e)th of March
or the (d + e − 9)th of April.

The symbols M and N are described (in Gauss’s own words) as follows:

M and N are numbers that have unchanging values for all time in the Julian
calendar, and always throughout at least 100 years in the Gregorian calendar; in
the former, M = 15 and N = 6 . . .

In general, one can find the values for M and N in the Gregorian calendar for
any given century from 100k to 100k + 99 through the following rule:

Suppose that k divided by

{
3
4

}
gives the (entire) quotients

{
p

q

}
where no con-

sideration is given to the remainders. Then

{
M

N

}
is the remainder one obtains,

when one divides

{
15 + k − p − q

4 + k − q

}
by

{
30
7

}
.

With these descriptions of a, b, c, d, e, k, p, q, M , and N , Gauss’s algorithm is
complete, but far from easily understood. We shall now proceed with our examination
of the formulas for these ten values that lie at the heart of the algorithm.
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The Metonic cycle and the PFM date

The Julian calendar, in use until the late sixteenth century (and still later in England
and its colonies), consists of ordinary years of 365 days and leap years of 366 days,
achieved by the familiar rule of inserting February 29th into years divisible by four.
Thus the average Julian year is exactly 365.25 days. (The Gregorian calendar, to be
discussed later, modifies this plan slightly.)

By the fourth century, it was known that 19 (average) Julian years span almost
exactly the same length of time as 235 lunar months (new moon to new moon). This
equivalence gives an average lunar month of 19 × 365.25/235 = 29.53085 days,
whereas the true lunar month is approximately 29.53059 days. This close agreement
forms the basis of the so-called Metonic cycle, a tabulation of new moons formulated
roughly as follows. Starting with an observed new moon December 24, 322 AD, new
moons are inserted into the table in intervals alternating between 30 and 29 days:
January 23, February 21, March 23, . . . , December 13 in the first year, then January
12, February 10, . . . in the second year, etc. This pattern will, of course, yield an aver-
age lunar month of 29.5 days, which is slightly too short. Thus, six “leap months” of
30 days and one of 29 days were inserted in the 19 year cycle at intervals selected to
keep the Metonic new moons as close to the true new moons as possible. The Metonic
cycle asserts that this pattern repeats exactly every 19 years. More information about
the Metonic cycle can be found in [2] and [7].

Though the construction of the entire table of Metonic new moons is a bit of a
puzzle, only those corresponding to the first full moon on or after March 21 are critical
to the Easter date. Over the entire 19 year cycle, these new moons occur (with M
for March and A for April) M23, M12, M31, M20, M9, M28, M17, A5 (=M36),
M25, M14, A2 (=M33), M22, M11, M30, M19, M8, M27, M16, A4 (=M35). Using
Gauss’s symbol A for the year and the familiar mod notation for the remainder in
integer division, we see that his first computation a = A mod 19 simply determines
where a given year falls in the ever-repeating 19 year Metonic cycle, and thus which
of the 19 new moon dates listed above is relevant. One might also observe that each
new moon date in the list can be obtained from the preceding one by subtracting 11
days or adding 19 days, operations that are closely related in modulo 30 arithmetic.
In fact it is not difficult to verify that this entire list of March and April new moon
dates can be generated as March 8 + d, where d = (19a + M) mod 30, M = 15, and
a = 0, 1, 2, . . . , 18. Of course, the nth day of March with n > 31 must be interpreted
as the (n − 31)st day of April; for example, when a = 7, we get d = 28, and the new
moon of “March 36” actually falls on April 5. We will assume this convention for the
remainder of the article.

Finally, we observe that the full moon date is always taken as the fourteenth day
of the lunar cycle; that is, 13 days after the new moon. Thus, the paschal full moon
(PFM) date in year A is March 21 + d in Gauss’s formulation.

The Sunday formula

In the list of Metonic cycle new moon dates in the previous section, the earliest and
latest are March 8 and April 5, respectively, with corresponding full moons March 21
and April 18. Easter falls at least one day, but at most seven days after the PFM date,
making March 22 the earliest and April 25 the latest possible Easter dates. Gauss sets
the Easter date as March 22 + d + e, where e ∈ {0, 1, 2, 3, 4, 5, 6} is chosen so that
Easter falls on a Sunday (the first Sunday after the PFM). Finding e is a straightforward
problem that amounts to counting elapsed days from a particular, known Sunday to
March 22 + d in the given year, then determining what e must be added to make
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the count divisible by 7. Curiously enough, though this is perhaps the most easily
understood part of the whole process, it is the part that Gauss explains most thoroughly.
His plan for finding e is based on the Gregorian calendar, which we shall address later;
for now, we present Gauss’s plan with minor modifications to complete our work for
the Julian calendar.

The number of days from Sunday, March 20, 1580, to March 22 + d + e in year
A is 2 + d + e + i + 365(A − 1580), where i counts February 29ths occurring in
this interval. (Here A ≤ 1582; in years before 1580 our count of elapsed days will be
negative.) Letting b = A mod 4, it is not hard to see that i = 1

4 (A − b − 1580). Thus
we want to choose e to make

2 + d + e + 1

4
(A − b − 1580) + 365(A − 1580)

divisible by 7. Adding 7
4 (A − b − 1580) will not affect divisibility by 7, and produces

the simpler form

2 + d + e + 367(A − 1580) − 2b. (1)

With simple reductions and the introduction of the symbols c = A mod 7 and N = 6
one finds that the quantity in equation (1) is divisible by 7 exactly when

e = (2b + 4c + 6d + N) mod 7.

Gauss’s formulation of the Easter date in year A in the Julian Calendar is com-
plete: Fix M = 15 and N = 6. Set a = A mod 19 to determine the year’s position
in the Metonic cycle. Let d = (19a + M) mod 30 so that March 21 + d gives the
PFM date for year a in the Metonic cycle. Let b = A mod 4, c = A mod 7, and
e = (2b + 4c + 6d + N) mod 7 to find the next Sunday. Then Easter Sunday is
March 22 + d + e or April d + e − 9, as appropriate.

The Gregorian calendar reform

Because the Julian calendar slightly overestimates the length of the year, Easter dates
based on March 21 shifted further and further from the true vernal equinox. In 1582
Pope Gregory instituted corrective changes resulting in the so-called Gregorian calen-
dar still in widespread use today. First, to correct the drift in the equinox date that had
already occurred after several centuries under the Julian calendar, the day after Octo-
ber 4, 1582 was declared to be October 15, 1582. Second, to prevent the same problem
from arising in the future, the length of the average year was reduced by declaring that
century years would be leap years only if divisible by 400. Thus 1600 was a leap year,
1700, 1800, 1900 were common years, 2000 was a leap year, etc.

Clearly these two corrections affect the dates upon which Sundays fall, a change
that can be addressed by modifying the value of N . (This change is broadly described
in the literature as the “solar equation.”) Once again our work closely mimics Gauss’s
presentation, adding a few details that he chose to omit.

Gauss counts the number of days from Sunday, March 21, 1700 to March 22 +
d + e in year A as 1 + d + e + i + 365(A − 1700), where once again i counts
February 29ths in this interval. (Here A ≥ 1583.) By setting k = �A/100� (the inte-
ger part of the quotient) and q = �k/4� and recalling that b = A mod 4, we have
i = 1

4 (A − b − 1700) − (k − 17) + (q − 4). (Here we are discarding February 29ths
in the century years and adding them back in for the years divisible by 400.) As before,
we want to choose e to make

1 + d + e + 1

4
(A − b − 1700) − (k − 17) + (q − 4) + 365(A − 1700)
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divisible by 7. By adding 7
4 (A − b − 1700) and simplifying it is not hard to show that

the resulting expression is divisible by 7 exactly when

e = (2b + 4c + 6d + 4 + k − q) mod 7.

Now the choice of N = (4 + k − q) mod 7 in Gauss’s algorithm is clear.
The Gregorian calendar reform contained a third correction that does not influ-

ence the civil calendar, but does affect the Easter date. The reader may recall that the
Metonic cycle produces a lunar month of 29.53085 days, compared to the true lunar
month averaging 29.53059 days. Just as the incorrect length of the Julian year slowly
accumulated to a noticeable error, the same was true for this incorrect length of the
lunar month. The accumulated error is approximately 1 day in 312.5 years, or very
nearly 8 days every 2500 years. Thus the Gregorian calendar reform included a one-
day correction in the PFM date every 300 years, seven consecutive times, followed
by a one-day correction after another 400 years, repeated indefinitely. The so-called
“lunar equation” affects the PFM date by changing M (and thus d) according to this
plan.

The solar equation, which resulted from removing February 29ths from the calen-
dar, affects the PFM dates just as it affects the Sunday calculation. Thus the value of M

must change by k − q, as did the value of N . All that remains is to incorporate the lunar
equation into M , but here, unfortunately, the extraordinarily dependable Dr. Gauss has
a minor failure. For the lunar equation, Gauss defines p = �k/3�, then builds

M = (15 + k − p − q) mod 30. (2)

His error is clear: this M properly accounts for the solar equation with k − q, but
applies the one-day correction dictated by the lunar equation every 300 years, rather
than the prescribed sequence of seven consecutive 300-year intervals followed by an
eighth interval of 400 years. Only mathematicians could be troubled by an error in the
Easter date that won’t surface for another two thousand years, but since we have the
means to correct it, let us do so!

Gauss’s error

One of the most widely quoted sources on the subject of the Easter date is J. M. Oudin’s
1940 paper “Étude sur la date de Paques” [8]. Indeed, it is Oudin’s Easter algorithm
that appears in the U.S. Naval Observatory’s almanac cited above. And it is common
for those who reproduce Oudin’s algorithm to do so after enthusiastically describing
Gauss’ algorithm, then “pulling the rug out from under it” by mentioning the error
described above. (Or simply declaring that Gauss’s method is wrong without under-
standing the nature of the error at all.)

Oudin writes, “Gauss, having forgotten to take into account these delays of the lunar
equation in his formula for M , the latter . . . works only until 4199 inclusively and is
found thus devoid of the character of generality that its author thought to have given
it.” Oudin is correct, but he writes without benefit of the ability to conduct a simple
internet search. With this modern tool, it is not difficult to find the following piece
missing from his puzzle.

In the January/February 1816 edition of the Zeitschrift fur Astronomie und ver-
wandte Wissenschaften (Journal for Astronomy and Related Sciences) we find a con-
tribution from Gauss [5]. It is titled “Berichtigung zu dem Aufsatze: Berechnung des
Osterfestes (Correction to the Essay: Computation of the Easter Date),” and gives pub-
lication information for the original August, 1800 paper. Gauss writes
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...my establishment of that rule [for p] took no notice of the circumstance that
the lunar equation, so-called by the originators of the Gregorian calendar, which
is reasonable every 300 years . . . must actually become reasonable once every
312 1

2 years. Without my engaging the question here of whether this achieves
the intended purpose, I only remark that my rule, with the arrangement of the
Gregorian Calendar as it is, can easily be brought into complete agreement when
one does not accept for the number p the quotient in the division of the number
k by 3, as stipulated in the citation above, rather one accepts the quotient in the
division of the number 13 + 8k by 25.

And of course, when Gauss’s corrected value p = � 13+8k

25 � is incorporated into equa-
tion (2) for M , it exactly produces the necessary one-day changes every 300 years,
seven consecutive times, followed by a one-day change after 400 years. Oudin’s criti-
cism was 124 years too late!

We close this section by noting that in the Gauss Werke, “Berechnung des
Osterfestes” closes with “Handschriftliche Bemerkung” or “Handwritten remarks.”
Among these is the correct formula for p. Presumably this was Gauss’s handwritten
remark, added to the manuscript sometime after his note of 1816.

The exceptional cases

Though it would appear that the Easter date algorithm is complete, there are two spe-
cial cases, not at all obvious, that must be addressed. The reader will gain a much
better appreciation of the challenges inherent in examining Gauss’s work by consider-
ing these exceptions in his own words:

From the above rules, one finds unique and alone in the Gregorian calendar
the following two exceptional cases:

I. If the calculation gives Easter on the 26th of April, then one always takes
the 19th of April. (e.g., 1609, 1989).

One easily sees that this case can only occur where the calculation gives
d = 29 and e = 6; d can only obtain the value 29 when 11M + 11 divided by
30 gives a remainder that is smaller than 19; to this end, M must have one of the
following 19 values:

0, 2, 3, 5, 6, 8, 10, 11, 13, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29.

II. If the calculation gives d = 28, e = 6, and meets the requirement that
11M + 11 divided by 30 gives a remainder that is smaller than 19, then Easter
does not fall, as follows from the calculation, on the 25th, rather on the 18th
of April. One can easily convince oneself that this case can only occur in those
centuries in which M has one of the following eight values:

2, 5, 10, 13, 16, 21, 24, 29.

With these two exceptional cases accounted for, the above rules are completely
general.

When translating Gauss, it is always useful to have a list of German synonyms for
“easily!”

The first exception is straightforward, though Gauss’s added remarks make it less
so. We noted previously that under the Julian calendar and the original Metonic cycle,
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Easter dates always fall between March 22 and April 25, inclusive. This rule was con-
tinued under the Gregorian calendar. If d = 29 and e = 6, however, Gauss’s formula
produces a PFM date of April 19 and an Easter date of April 26, in violation of the
rule. The Church’s Easter tables simply shifted the PFM date to one day earlier under
this circumstance (from Sunday, April 19 to Saturday, April 18), effectively replacing
d = 29 by d = 28. This has no effect at all unless e = 6, that is, unless April 19 is a
Sunday; in that case it forces Easter to occur a week earlier, on April 19.

The comments that Gauss supplies along with the first exception are puzzling until
one observes that by fixing d = 29 in the PFM formula d = (19a + M) mod 30, one
can solve to find a = (11M + 11) mod 30 and M = (29 + 11a) mod 30. The first
of these equations reduces Gauss’s claim of “a remainder that is smaller than 19” to
the simple observation that a takes on the values 0, 1, 2, . . . , 18. Now Gauss’s list of
M values can be generated by successively substituting these a values into the second
equation. One should also note that Gauss’s choice of 1989 as an example of the first
exception is erroneous; he corrects this without comment in an article on the Easter
date that appeared in Brunswick Magazine [6] in 1807, replacing 1989 with 1981.

The second exceptional case is a result of the change described in the first. The Gre-
gorian calendar reformers wished to preserve a basic feature of the original Metonic
full moons: the PFM date is never duplicated within one 19-year cycle. But now this
is sure to happen when d = 28 and d = 29 occur within the same 19-year cycle,
because the d = 29 PFM (April 19) has been shifted to the d = 28 PFM date (April
18). Gauss’s peculiar way of identifying these cycles in which both d = 28 and d = 29
occur needs a closer look.

Suppose that for a given M value, there is an a ∈ {0, 1, . . . , 18} for which
d = (19a + M) mod 30 produces d = 28; suppose also that “11M + 11 divided
by 30 gives a remainder that is smaller than 19.” The latter requirement means that
there is an a ∈ {0, 1, . . . , 18} for which a = (11M + 11) mod 30. As in the first
exception, this can be rearranged to obtain 29 = (19a + M) mod 30; that is, for the
given M value d = 29 is also achieved.

So how do we avoid the duplication of PFM dates when a given M value produces
both d = 28 and d = 29 in a 19-year cycle? Simply shift the d = 28 PFM date (April
18) to that of d = 27 (April 17)! The apparent cascade of shifts that might be pro-
duced by this plan does not occur, because the 19-year cycles containing both d = 28
and d = 29 never contain d = 27. (Probably the simplest way to see this is by brute
force: construct a table of d = (19a + M) mod 30 values for a = 0, 1, 2, . . . , 18 and
M = 0, 1, 2, . . . , 29.) Since e = 6 in Gauss’s second exceptional case, the PFM asso-
ciated with d = 28 falls on Sunday, April 18, so reducing d to 27 places the PFM on
Saturday, April 17 and Easter on Sunday, April 18, just as Gauss’s second exception
dictates.

Finally, to find the eight values of M supplied by Gauss in the second exceptional
case, it is probably simplest to fix d = 28 and consider “the requirement that 11M + 11
divided by 30 gives a remainder that is smaller than 19” by listing the triples

(a, M, (11M + 11) mod 30)

for a = 0, 1, 2, . . . , 18. Those meeting the requirement are (11, 29, 0), (12, 10, 1),
(13, 21, 2), (14, 2, 3), (15, 13, 4), (16, 24, 5), (17, 5, 6), and (18, 16, 7), from which
we can read off the middle entries as Gauss’s eight M values.

Gauss’s method is complete!

Conclusion

The mathematics in Gauss’s Easter algorithm is trivial. But his ability to transform a
desperately arcane set of rules and tables into a simple arithmetic process illustrates
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once again his uncanny ability to see deeply into complicated matters. If only he would
give mere mortals a little more guidance through his work . . . ah, but perhaps not. For
then the joy of completing the many puzzles he has left behind would be lost to the
rest of us!
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Suppose you live on a torus and want to heat it as efficiently as possible with a finite
number of identical heat sources. What configuration is optimal and how much better
is the optimal solution compared with, say, a random placement of the sources? The
answer to this question is surprisingly simple and involves a small detour into some
elementary number theory. Interestingly, the solution to this problem has connections
to more advanced questions in numerical integration.

Our space of interest is the two-dimensional torus T
2 represented as the square

[0, 2π]2 in which opposite boundary faces are glued together; see Figure 2. The aim is
to find ways of effectively heating the torus T2. If we are given N identical radiators,
how are we supposed to place them to guarantee that the temperature in T

2 becomes
everywhere nice and cozy as quickly as possible? We start by describing the heat given
off by a radiator as a function φ : T2 → R. Such a function could, for example, have
the form

φ(x, y) = e−36(x2+y2),

which describes an initial temperature maximum at (0, 0) that decays exponentially
with growing distance; see Figure 1.

Figure 1 Plot of the function φ(x, y) = e−36(x2+y2).
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We assume the N radiators are placed at the points (xn, yn)
N
i=1, turned on for a little

while and then turned off at time t = 0. We then watch as the heat spreads throughout
the room. Each radiator will have contributed a particular temperature distribution φ

and, since all radiators are assumed to be identical, the temperature in (x, y) at time
t = 0, denoted by u(0, x, y), will be of the form

u(0, x, y) =
N∑

n=1

φ(x − xn, y − yn). (1)

Denoting the temperature in (x, y) ∈ T
2 at time t by u(t, x, y), the governing phys-

ical law is the free heat equation ut = �u (which we won’t use directly). Physical
intuition tells us that the heat is going to spread: points adjacent to warm points will
heat up while, conversely, warm points surrounded by colder points will cool down. We
expect the heat to be spread more and more evenly and that temperature will eventually
converge to a constant (which can be explicitly computed because the total amount of
heat in a closed system such as T2 has to stay constant):

for all (x, y) ∈ T
2, lim

t→∞ u(t, x, y) = 1

area(T2)

∫
T2

u(0, x, y)dxdy.

It turns out to be useful to rewrite u(0, x, y) as a Fourier series

u(0, x, y) =
∑

(k,m)∈Z2

ck,mei(kx+my).

This representation immediately implies that

1

area(T2)

∫
T2

u(0, x, y)dxdy = 1

area(T2)

∫
T2

⎛
⎝ ∑

(k,m)∈Z2

ck,mei(kx+my)

⎞
⎠ dxdy

= 1

area(T2)

⎛
⎝ ∑

(k,m)∈Z2

ck,m

∫
T2

ei(kx+my)

⎞
⎠ dxdy

= c0,0,

where c0,0 is the constant term of the Fourier series of u(0, x, y) because all the other
integrals vanish. How should we pick the points {(xn, yn)

N
n=1} to ensure that the initial

condition u(0, x, y) converges to the constant temperature as quickly as possible? We
do not want to make any special assumptions on the form of φ : T2 → R. In particular,
our placement rule will be valid for all smooth functions φ—even for heat distributions
φ that are not radially symmetric or even physically meaningful. The key is to utilize
elementary number theory in the form of particular permutations of finite fields.

Result

Our argument will immediately show that every heat distribution converges to a con-
stant with speed at least e−t . Moreover, we present a general and particularly nice
placement of N points (with N prime) that uses number theory in an essential way
to get a much faster convergence speed of at least e−(N/4+ε)t with ε > 0: for a prime
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number N , an integer p satisfying
√

N/2 < p ≤ √
N and an arbitrary q ∈ N, we

define the point set {(xn, yn)1≤n≤N } with

xn = 2π
n

N
and yn = 2π

(pn + q) mod N

N
;

Figure 2 illustrates the construction for N = 7, p = 2 and q = 3. Number theoretical
constructions of point sets of this kind are called lattice rules and have a long history in
the field of numerical integration (see, for example, the book by Sloan and Joe [6]). It
seems that the connection to the placement of radiators has not been observed before.

Figure 2 Placing seven (identical) heat distributions (radiators, candles, . . . ) at these
points leads to convergence towards the constant room temperature with a speed of at
least e−4t . The points A and B illustrate how boundary faces are identified. In other
words, exiting to the left (up) makes you appear on the right (down).

Theorem. This set of points has the following property: for every smooth heat distri-
bution φ : T2 → R, the initial distribution u(0, x, y) given by

u(0, x, y) =
N∑

n=1

φ(x − xn, y − yn)

converges to the equilibrium with speed at least

max
(x,y)∈T2

∣∣u(t, x, y) − c0,0

∣∣ ≤ ce−αt ,

where c0,0 is the constant term of the Fourier series of u(0, x, y), c is a constant inde-
pendent of N and t , and α = �√N/2	2 + 2�√N/2	 + 1 ≥ N/4.

How this works

The argument comes in two parts. First, we use a neat formula for the heat equation
to derive a condition on the points {(xn, yn)1≤n≤N } that ensures that the heat equation
converges quickly to its equilibrium state. In the second part of the argument, we verify
that the condition is valid for our proposed set of points.
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Step 1. It will be practical to use an explicit formula for the solution of the heat
equation in terms of Fourier series. More precisely, if

u(0, x, y) =
∑

(k,m)∈Z2

ck,mei(kx+my),

then (see, e.g., [3]) the solution of the heat equation is given by

u(t, x, y) =
∑

(k,m)∈Z2

ck,me−(k2+m2)t ei(kx+my),

which can be easily verified by explicit computation since

∂

∂t
u(t, x, y) =

∑
(k,m)∈Z2

ck,m(−k2 − m2)e−(k2+m2)t ei(kx+my) = �u(t, x, y).

This already shows that

u(t, x, y) − 1

area(T2)

∫
T2

u(0, x, y)dxdy =
∑

(k,m)∈Z2
(k,m) �=(0,0)

ck,me−(k2+m2)t ei(kx+my)

can be written as the sum of exponential functions each of which decays at least as
quickly as e−t independently of everything else.

We now write the heat distribution of a single heat source (radiator, candle, ...) as

φ(x, y) =
∑

(k,m)∈Z2

ak,mei(kx+my).

Plugging this into equation (1) and exchanging the order of summation leads to

N∑
n=1

φ(x − xn, y − yn) =
N∑

n=1

∑
(k,m)∈Z2

ak,mei(k(x−xn)+m(y−yn))

=
N∑

n=1

∑
(k,m)∈Z2

ak,me−ikxne−imynei(kx+my)

=
∑

(k,m)∈Z2

ak,m

(
N∑

n=1

e−ikxne−imyn

)
︸ ︷︷ ︸

:= ck,m

ei(kx+my).

The formula for the heat equation tells us that we would like to pick the points
{(xn, yn)

N
n=1} such that the expression in brackets vanishes for as many small values of

k, m as possible. More precisely, we obtain the following lemma.

Lemma 1. If the set of points (xn, yn)1≤n≤N has the property that

N∑
n=1

eikxneimyn = 0 (2)
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for all (k, m) ∈ Z
2 with (k, m) �= (0, 0), |k|, |m| ≤ � and � ∈ Z, then for all smooth φ :

T
2 → R and corresponding u(0, x, y) as in equation (1) we have, for some constant

c > 0,

max
(x,y)∈T2

∣∣∣∣u(t, x, y) − 1

area(T2)

∫
T2

u(0, x, y)dxdy

∣∣∣∣ ≤ ce−(�2+2�+1)t .

Proof. We have the explicit solution to the heat equation as

u(t, x, y) =
∑

(k,m)∈Z2

ck,me−(k2+m2)t ei(kx+my),

where ck,m = 0 for all |k|, |m| ≤ �, � ∈ Z. This means that the smallest sum of squares
k2 + m2 of a pair (k, m) for which ck,m �= 0 is at least (� + 1)2 + 02 = �2 + 2� + 1 for
the pair (� + 1, 0). Hence, the first nonzero exponential term decays at least as quickly
as e−(�2+2�+1)t . As for nonzero coefficients, we can use the fact that φ is smooth to
conclude that

∣∣ak,m

∣∣ =
∣∣∣∣ 1

area(T2)

∫
T2

φ(x, y)e−i(kx+my)dxdy

∣∣∣∣ ≤ max
(x,y)∈T2

|φ(x, y)|

and classical results (see, e.g., [3]) on the decay of Fourier coefficients of smooth
functions to ensure that everything is summable. �

Step 2. We will now show that our point set has the property from Lemma 1.

Lemma 2. For a prime N , let {(xn, yn) : 1 ≤ n ≤ N} be as defined above. Then for
(0, 0) �= (k, m) ∈ Z

2 with |k|, |m| ≤ √
N/2

N∑
n=1

eikxneimyn =
N∑

n=1

e2πi
kn+m(pn+q)

N =
N∑

n=1

e2πi
(k+mp)n+mq

N = 0. (3)

Proof. This is a fairly intricate expression. We want to relate it to the fact that the N th
roots of unities sum to 0 because they form a geometric progression, that is,

N∑
n=1

e2πi n
N =

N∑
n=1

(
e2πi 1

N

)n = e2πi N+1
N − 1

e2πi 1
N − 1

− 1 = 0. (4)

Therefore, if n → (k + mp)n + mq is a bijection on ZN = {0, 1, . . . , N − 1}, then
equation (4) would imply equation (3) since we are still summing over the roots of
unity (just in a different order); see Figure 3.

For which values of k and m is this the case? First, it is clear that the map n →
(k + mp)n + mq is a bijection on ZN if and only if n → (k + mp)n is a bijection on
ZN . Now, since N is prime, the map n → (k + mp)n is a bijection if and only if N

does not divide evenly into mp + k, which is true for k, m and p, as assumed. Indeed,
since

|k|, |m| ≤ 1

2

√
N < p ≤ √

N,

we have

|mp + k| ≤ |mp| + |k| ≤ 1

2
N + 1

2

√
N < N.
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Figure 3 The map n → 3n + 2 is a bijection on Z5 and induces a reordering of the 5th
roots of unity.

This means that N does divide evenly into mp + k only if mp + k = 0. However,
|k| < p implies −p < k < p and so

(m − 1)p < mp + k < (m + 1)p.

Thus mp + k = 0 implies m − 1 < 0 < m + 1, which gives m = 0 and thus k = 0.
But this contradicts the assumption that (k, m) �= (0, 0), thus we must have that N

does not divide evenly into mp + k, as claimed. �

Since k, m ∈ Z and |k|, |m| ≤ √
N/2, we set � = �√N/2	 in Lemma 1 to obtain

the result stated in the theorem.

Example. To illustrate our result we place 7 radiators as shown in Figure 2 and use
the heat distribution φ from the introduction. It turns out that φ has a particularly nice
Fourier series, i.e.,

φ(x, y) = e−36(x2+y2) =
∑

(k,m)∈Z2

ak,mei(kx+my),

with

ak,m = 1

4 · 36π
e− k2+m2

4·36 .

The coefficients ak,m are all we need to build the functions u(0, x, y) and u(t, x, y).
We observe that the average value of one heat source is a0,0 and thus, by summation,
c0,0 = Na0,0. This shows that the average temperature is

1

area(T2)

∫
T2

u(0, x, y)dxdy = 7a0,0 = 7

144π
≈ 0.01547 . . .

Thus, we can numerically investigate how fast max(x,y) u(t, x, y) converges to 7a0,0

as t → ∞ for different point sets. According to Lemma 2 all coefficients ck,m with
|k|, |m| ≤ √

7/2 vanish. Hence, setting � = �√7/2	 in Lemma 1, we obtain a conver-
gence of at least e−4t , which can be also observed from our numerical results in Figure
4. This can be easily compared to random points: for a set of N random points, we
expect a speed of convergence of (c/

√
N)e−t , where c is a constant depending only on

φ. This shows that there is quite a bit of decay for t small but, as t becomes large, the
result is much worse than our construction.
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Figure 4 Comparison of convergence of max(x,y) u(t, x, y) for different point sets. The
red graph shows the convergence for our point set (with convergence speed e−4t ), the
blue graph corresponds to a set of 7 random points, which almost surely will always only
converge with speed e−t .

The big picture

To illustrate the generality of the ideas from the example, we outline the appearance
of these number theoretical constructions in two more situations.

Fourier analysis. A result of Montgomery [4, 5] (proven for a quite different pur-
pose) implies that our construction is optimal up to a constant: N heat sources can
never decay faster than e−αt where α ∼ N . A result [7] of the second author implies
that this is even true if we allow the heat sources to have different (positive weights).
Statements of this type are probably true on very general domains, the best-known
result in that direction is [1].

Cubature formulas. A set of N points {(xn, yn)
N
n=1} is said to be an exact cubature

formula of degree � on T
2 if we can compute the integral of every function of the form

f (x, y) =
∑

(k,m)∈Z2
|k|+|m|≤�

ak,mei(kx+my),

exactly by taking the average value at the N points, i.e., if for all such f , then

1

(2π)2

∫
T2

f (x, y)dxdy = a0,0 = 1

N

N∑
n=1

f (xn, yn).

Plugging in and exchanging the order of summation gives

N∑
n=1

f (xn, yn) =
∑

(k,m)∈Z2
|k|+|m|≤�

ak,m

(
N∑

n=1

eikxneimyn

)

and, hence the similarity. The underlying expression is the same and the goal is to
select points that make it vanish for all |k| + |m| ≤ � with (k, m) �= (0, 0). Inter-
estingly, Cools and Sloan [2] have discovered cubature formulas with the minimal
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possible number of points for a given � that are not lattice rules. It would be interest-
ing to see similar results in our context.

Wave equation. The radiator problem also appears in other physical problems. Sup-
pose we have a T

2-swimming pool and want to create waves by throwing in N stones
simultaneously. The goal is to pick the points in such a way that we get no low-
frequency waves at all. For simplicity, we can model this with the wave equation

utt = �u and ut

∣∣
t=0

= 0

for u(0, x, y) as in equation (1). Using again the theory of Fourier series, we follow our
line of thought from Step 1. We solve the wave equation explicitly with the formula

u(t, x, y) =
∑

(k,m)∈Z2

ck,mei(k2+m2)t ei(kx+my),

and see by the same subsequent computation, that, in order not to generate low-
frequency waves, it is required that equation (2) holds for as many small (k, m) ∈ Z

2

as possible. These point sets and the same arguments even apply to more complicated
equations such as the Schrödinger equation iut = �u.
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Proposition. For n ∈ N, the following identity holds:

T4n = 4(T2n − Tn) + n + T2n−1.

Proof. The proof is demonstrated for n = 4.

�

Summary. This proof without words demonstrates an identity on difference between triangular numbers.
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Proof Without Words: Some Arctangent
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Theorem. The golden ratio ϕ =
√

5 + 1

2
satisfies

1

ϕ
=

√
5 − 1

2
. The following rela-

tionships hold:

(1) arctan ϕ = arctan(1/2) + (1/2) arctan 2,

(2) arctan ϕ − arctan(1/ϕ) = arctan(1/2),

(3) 2 arctan(1/ϕ) = arctan 2,

(4) arctan ϕ + (1/2) arctan 2 = π/2 = 2 arctan(1/ϕ) + arctan(1/2), or,
arctan ϕ − 2 arctan(1/ϕ) = arctan(1/2) − (1/2) arctan 2, and

(5) arctan ϕ = π/4 + (1/2) arctan(1/2).

The following image can be used to show (1)–(5) above.

α = arctan(1/ϕ), β = arctan(1/2), γ = α + β = arccot(1/ϕ) = arctan ϕ,

2α = arctan 2, 2α + β = π/2.
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Beyond the proof without words, a linear combination of any two of the first four
identities would give a general form of all the identities. For example, using (2) and (3),
for x, y ∈ R, we have x arctan ϕ + (2y − x) arctan(1/ϕ) = x arctan(1/2) + y arctan 2.
All five identities are special cases of this general identity.

Challenge. Relabel the above figure and use 2ϕ − 3 = (1/ϕ3) and 2ϕ − 1 = √
5 to

prove the following:

(1) arctan ϕ3 =(1/2) arctan(1/2) + arctan 2,
(2) arctan ϕ3 − arctan(1/ϕ3) = arctan 2,
(3) 2 arctan(1/ϕ3) = arctan(1/2),
(4) arctan ϕ3 + (1/2) arctan(1/2) = (π/2)= 2 arctan(1/ϕ3) + arctan 2, and
(5) arctan ϕ3 = π/4 + (1/2) arctan 2.

For another proof without words that relates the arctangent of 2 to the arctangent of
the reciprocal of the golden ratio, see [1].
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If you had visited Kyoto’s Gion shrine around the middle of the eighteenth century,
you might have noticed a wooden tablet, inscribed with geometric figures, hanging
from one of the eaves. This may not have been a great surprise, since such sangaku
(literally “mathematical tablets”) were not uncommon in Japanese temples and shrines
at the time. However, this particular tablet happened to hold a problem that would rise
to great fame among a generation of Japanese mathematicians.

Problem. We have a segment of a circle. The line segment m bisects the arc and chord
AB. As shown, we draw a square with side s and an inscribed circle of diameter d. Let
the length AB = a. Then, if

p = a + m + s + d and q = m

a
+ d

m
+ s

d

and p and q are given, find a, m, s, and d.

Figure 1 Gion shrine problem.

The algebraic particulars of this challenge might strike modern mathematicians as odd,
but it has roots in a fascinating niche of mathematical history.

In this paper, after taking a brief look at Japan’s past, we return to the present and
offer a new solution to the Gion shrine problem. We also address questions of existence
and uniqueness, which curiously lead us back to a result of Pierre de Fermat.
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Background

Eighteenth-century Japan, unified under the Tokugawa shogunate, was a relatively
peaceful place where artistic recreation flourished. Those with leisure time indulged in
the emerging arts of kabuki and bunraku theater, haiku poetry, and ukiyo-e woodblock
printing—and a homegrown style of mathematics called wasan (wa- = “Japanese” +
-san = “mathematics”). Practitioners of wasan tended to gravitate toward the aesthet-
ics of geometry, and proved wonderful (though esoteric) results about packings of
circles, polygons, and ellipses, as well as analogous problems in three dimensions.
When a collection of theorems was deemed especially beautiful, it would be inscribed
on a sangaku and hung in a Buddhist temple or Shinto shrine—as an offering to the
gods, a challenge to other worshippers, and an advertisement for the school producing
the work.

At the same time, the shogunate’s policy of sakoku (“closed country”) kept Japan
intellectually distant from the scientific revolution of the West. The result was an insu-
lated discipline that relied heavily on two sources of established knowledge: the pla-
nar geometry results of the Greeks and the rich body of mathematics imported from
China, both of which had long been present in Japanese mathematics. Sangi computing
rods, a notable Chinese technology, allowed for the numerical computation of roots of
polynomials, and were used extensively in Japan. For more about traditional Japanese
mathematics, see [9], [10], and [14].

Figure 2 Yasaka (formerly Gion) shrine in
Kyoto, Japan.

The Gion shrine problem exhibits
both geometrical aesthetics and an
opportunity to harness the computational
power of sangi. Tsuda Nobuhisa solved
the problem first by deriving a polyno-
mial of degree 1024 = 210 from whose
roots one could derive the result; his
solution appeared on a sangaku hung
from the Gion shrine in 1749. Subse-
quent progress was made by a mathe-
matician named Nakata, who was able to
reduce the necessary polynomial degree
to 46. However, a celebrated break-
through was made by Ajima Naonobu,
who in a 1774 handwritten manuscript
entitled Kyoto Gion Gaku Toujyutsu (lit-
erally “The Solution to the Kyoto Gion
Sangaku”) presented a degree ten poly-
nomial solution. Ajima’s derivation was first published in 1966 [1], and has since
received a modern analysis [8].

Strikingly, Ajima’s approach uses no geometric techniques more sophisticated than
the Pythagorean theorem. With a great deal of algebraic persistence, he is able to
manipulate a few basic geometric relations into a system of high degree equations
in a and d. A clever substitution yields four cubic equations in a single variable X

whose coefficients are given in terms of a, p, and q. This can be viewed as a homo-
geneous linear system with nontrivial solution (X3, X2, X, 1); any such system must
have determinant zero. Ajima then uses a technique equivalent to Laplace’s method of
cofactor expansion (c. 1776) to arrive at a polynomial equation of degree 10 in a, which
requires nearly a full page to write out completely. It should be noted that, because of
sakoku, Ajima (1732–1798) may not have even heard of Laplace (1749–1827), and
likely was unaware of his results.
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The solution given in this paper also has the form of a tenth degree polynomial.
In contrast to Ajima’s, ours makes extensive use of trigonometric functions, though
it should be noted that eighteenth-century Japanese mathematicians had inherited a
basic understanding of trigonometry from the Chinese. Indeed, trigonometric tables
and a version of the Law of Cosines have been found in Tokugawa period (1603–
1868) documents; see [10] and [11]. An advantage of this approach is that it allows for
greater geometrical insight—and yields a polynomial that can comfortably be written
in two lines, thanks in large part to a choice of variables more convenient than Ajima’s.
We also show existence and uniqueness of solutions (an issue Ajima does not seem to
have addressed), and that, in general, for rational p and q, the numbers a, m, s and
d are contained in an extension of Q of degree 20. We then consider the problem of
realizing the Gion configuration with rational lengths, and prove that this is impossible
using a result of Fermat pivotal to the history of (Western) number theory.

Solution

In contrast to Ajima’s solution, given in the form of a polynomial in a, ours uses a new
variable t . While t arises somewhat mysteriously from a series of ad-hoc substitutions,
we shall ultimately see that in fact t = d/a.

Solution 1. We start by fixing the constants

q0 = −3 + 3
√

5

2
+ 1

2

√
1
2 (125 − 41

√
5) ≈ 2.394972

and

t0 = 1
2

(
1 − √

5 +
√

2(5 − √
5)

) ≈ 0.557537.

Given p and q, with 2 < q ≤ q0, we first find the unique solution t ∈ (0, t0] of the
equation

8t10 + (16q − 33)t8 + 16t7 + (8q2 − 49q + 56)t6 + (16q − 33)t5

− (16q2 − 55q + 39)t4 − (16q − 22)t3 + (8q2 − 23q + 18)t2 − t + q − 2 = 0.

Then, using t , we compute the quantities

m′ = 16t2, d ′ = 16t2(1 − t2), a′ = 16t (1 − t2),

s ′ = −1 + 6t2 − t4 +
√

1 + 20t2 − 26t4 + 20t6 + t8,

and define p′ = a′ + m′ + s ′ + d ′. Finally, the desired quantities will be

a = p

p′ a
′, m = p

p′ m
′, s = p

p′ s
′, d = p

p′ d
′.

Proof. From the definitions of p and q, one immediately sees that scaling all lengths
by λ changes p to λp but leaves q invariant. As such, the problem is, for all practical
purposes, independent of the overall scale. For convenience, we first seek a solution in
which the radius of the circular arc is 1.

Observe that the angle ϕ (see Figure 3) determines the circular segment and, as we
shall see, the solution. But for the problem to have a solution, the angle ϕ is limited to
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Figure 3 Construction for the solution. We first assume that the radius of the circular arc
with center C is 1.

Figure 4 The extreme case.

the interval 0 < ϕ ≤ ϕ0 = π

2 + arctan 1/2 ≈ 117◦. If ϕ > ϕ0, the square will fail to fit
inside the segment. Figure 4 shows the limiting case in which ϕ = ϕ0. Not surprisingly,
the given value of q completely determines ϕ. We shall see this correspondence shortly
(Figure 5).

Our first goal will be to express each of the quantities d, m, a, and s in terms of a
single variable; the quantity r = d/2, the radius of the small circle, happens to be a
convenient choice. From Figure 3 we have

a = 2 sin ϕ, (1)

s = cos θ − cos ϕ = sin θ. (2)
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From (2), we find that cos θ = cos ϕ + sin θ . Thus

cos2 θ = cos2 ϕ + 2 cos ϕ sin θ + sin2 θ,

and finally

2 sin2 θ + 2 cos ϕ sin θ − sin2 ϕ = 0.

This equation, quadratic in sin θ , has two solutions whose product is negative. Since
in our case sin θ > 0, we must take the greater of the two solutions,

sin θ = − 1
2 cos ϕ + 1

4

√
4 cos2 ϕ + 8 sin2 ϕ,

from which it follows that

sin θ = 1
4

√
4 + 4 sin2 ϕ − 1

2 cos ϕ = 1
4

√
8 − 4 cos2 ϕ − 1

2 cos ϕ. (3)

The angle δ > 0 in Figure 3 can be described by the equations

(1 − r) cos δ − r = 1 − m and sin δ = r

1 − r
,

where 0 < r < 1/2. It follows that

(1 − r)

√
1 − r2

(1 − r)2
− r = 1 − m,

whence

m = 1 + r − √
1 − 2r. (4)

We also have

m = 1 − cos ϕ,

from which it follows that

cos ϕ = −r + √
1 − 2r. (5)

Taking a brief digression, we can use (1), (2), (3), and (5) to write q in terms of ϕ.
A plot of the implicit function ϕ(q) is given in Figure 5.

Since 0 < ϕ ≤ ϕ0 we have 1 > cos ϕ ≥ −1/
√

5 = cos ϕ0. Then (5) implies that

0 < r ≤ r0 = −1 + 1√
5

+
√

2 − 2√
5
.

Equation (5) also tells us that

sin2 ϕ = 1 −
(
(1 − 2r) + r2 − 2r

√
1 − 2r

)
= 2r − r2 + 2r

√
1 − 2r,

(6)

which, when combined with (3) and (5), yields

sin θ = 1
2

(
r − √

1 − 2r +
√

1 + 2r − r2 + 2r
√

1 − 2r
)
. (7)
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Figure 5 A given q determines the angle ϕ, in degrees.

Bringing together our results from (1), (2), (4), (6), and (7), we now have the prob-
lem’s four desired quantities in terms of r:

d = 2r,

m = 1 + r − √
1 − 2r,

a = 2
√

2r − r2 + 2r
√

1 − 2r,

s = 1
2

(
r − √

1 − 2r +
√

1 + 2r − r2 + 2r
√

1 − 2r
)
.

(8)

At this stage, we could write down a polynomial equation relating q and r , plug
in the given value of q and solve for r ∈ (0, r0] (using sangi, or Mathematica), and
use this value to recover the quantities d, m, a, and s. But such an equation would
have an unnecessarily large degree due to the numerous radicals in (8). Thus we first
eliminate some of these radicals with a sequence of changes of variable. First, define
x > 1 by 2r = x(2 − x). The inequality 0 < r ≤ r0 < 1/2 guarantees that 2 > x ≥
x0 = 1 + √

1 − 2r0 ≈ 1.051462. We can write the above equations (8) in terms of x:

d = x(2 − x)

m = 1
2 (4 − x2)

a = x
√

4 − x2

s = 1
4

(
2 − x2 +

√
4 + 4x2 − x4

)
.

(9)

We next remove the radical
√

4 − x2 using the following rational parametrization of
the circle x2 + y2 = 4 by a new variable t = (2 − x)/y:

x = 2
1 − t2

1 + t2
, y =

√
4 − x2 = 4t

1 + t2
.

As an aside, these x and y are obtained by doubling the coordinates of the well-known
rational parametrization of the unit circle x2 + y2 = 1; a further consequence is that
the sides of any right triangle are proportional to (t2 − 1), 2t , and (t2 + 1), for some
rational number t . See for example [4, §6.1, pp. 58–60] for an overview.
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The equations for x and y give us t2 = (2 − x)/(2 + x), and it is easy to see that
when x ∈ [x0, 2) we get t2 ∈ (0, t2

0 ). Thus we must restrict t so that

0 < t ≤ t0 = 1
2

(
1 − √

5 +
√

2(5 − √
5)

) ≈ 0.557537. (10)

In terms of the new variable t equations (9) become

d = 8t2(1 − t2)

(1 + t2)2
, m = 8t2

(1 + t2)2
, a = 8t (1 − t2)

(1 + t2)2
,

s = −1 + 6t2 − t4 + √
1 + 20t2 − 26t4 + 20t6 + t8

2(1 + t2)2
.

(11)

We simplify these expressions further by changing the overall scale of the problem,
choosing the radius of the circular arc to be 2(1 + t2)2 instead of 1. Our four quantities
d, m, a, s are then given by

d = 16t2(1 − t2), m = 16t2, a = 16t (1 − t2),

s = −1 + 6t2 − t4 +
√

1 + 20t2 − 26t4 + 20t6 + t8.
(12)

Observe that the new variable t equals 2r/a.
Putting everything together, we have

p = a + m + s + d

= −1 + 16t + 38t2 − 16t3 − 17t4 +
√

1 + 20t2 − 26t4 + 20t6 + t8,

q = m

a
+ d

m
+ s

d

= −1 + 22t2 + 16t3 − 33t4 + 16t6 + √
1 + 20t2 − 26t4 + 20t6 + t8

16t2(1 − t2)
. (13)

Equation (13), relating q and t , can be rewritten as(
16t2(−1 + t2)q + (−1 + 22t2 + 16t3 − 33t4 + 16t6)

)2

= 1 + 20t2 − 26t4 + 20t6 + t8,

and further expanded to 32t2P(t, q) = 0 where

P(t, q) = 8t10 + (16q − 33)t8 + 16t7 + (8q2 − 49q + 56)t6 + (16q − 33)t5

− (16q2 − 55q + 39)t4 − (16q − 22)t3 + (8q2 − 23q + 18)t2 − t + q − 2 = 0.

Suppose then that we are given p and q. We first solve for t in P(t, q) = 0, choosing a
root t ∈ (0, t0]. Then equations (12) recover quantities a′, m′, s ′, and d ′ that correspond
to q. To get the correct p we need only rescale the solution by the reciprocal of p′ =
a′ + m′ + s ′ + d ′. This is precisely the procedure indicated in Solution 1. �

Not all values of p and q are allowed. We can plot q in terms of t as given by
equation (13); see Figure 6. We see that q varies on the interval 2 < q ≤ q0 where

q0 = q(t0) = −3 + 3
√

5

2
+ 1

2

√
1
2 (125 − 41

√
5) ≈ 2.394972. (14)
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Figure 6 Plot of q(t).

If q is not in the interval (2, q0], it cannot correspond to an allowable value of t ; in this
case there is no solution to the problem.

On the other hand, q(t) is an increasing function on the interval [0, t0]. To show this,
we compute and rationalize q ′(t). The inequality q ′(t) > 0 is equivalent to one of the
form u(t) > 0 for a polynomial u(t); the latter inequality is easy to check. Therefore,
for each q in the interval (2, q0] there is a unique positive t ≤ t0 with P(q, t) = 0.

To summarize, given a pair of positive real numbers p and q:

• if q ≤ 2 or q > q0, there is no solution to the Gion shrine problem;
• if 2 < q ≤ q0, there is exactly one solution.

For many values of q ∈ Q, the polynomial P(q, t) is irreducible. For example, this
happens with q = 9/4. In such a case, the corresponding t generates a field Q(t) that
is a degree 10 extension of Q. Here the numbers a′, m′, s ′ and d ′ are contained in
Q(t) or an extension of degree 2 of Q(t). If we choose p to be rational, the same
occurs with the final numbers a, m, s, and d. These numbers might be contained in a
proper subfield of Q(t); but since t = 2r/a, this subfield can be only Q(t) or a degree-
2 extension of Q(t). Thus, the solutions generate a field extension of degree 20 or
possibly 10.

Rational solutions

In yosan (yo- = “Western”), following a tradition that goes at least as far back as Dio-
phantus and remains productive in modern number theory (which also incorporates
contributions from modern Japan and elsewhere), one is often interested in the exis-
tence of integral or rational solutions to geometrical problems. So we ask: Is there
any rational solution of the Gion shrine problem, that is, a solution for which each
of the quantities p, q, a, m, s, d is a rational number? We shall show that there is no
such solution, and that by a happy coincidence this fact is obtained from a theorem of
Fermat that forms a key juncture in the history of yosan number theory.

Given our analysis in the previous section, we soon see that a rational solution of
the Gion shrine problem is tantamount to a rational value of t in our range 0 < t ≤ t0
for which

s ′ + 1 − 6t2 + t4 =
√

1 + 20t2 − 26t4 + 20t6 + t8



118 MATHEMATICS MAGAZINE

is also rational; that is, a rational point on the algebraic curve

C : u2 = 1 + 20t2 − 26t4 + 20t6 + t8 (15)

with 0 < t ≤ t0. We shall show the following proposition.

Proposition. The only solutions in rational numbers to equation in (15) are the pair
(t, u) = (0, ±1) and the quadruple (t, u) = (±1, ±4).

In particular it will follow there are none with 0 < t ≤ t0.

Proof. If t = 0 then clearly u = ±1. Assume, then, that (t, u) is a rational solution of
equation (15) with t 
= 0. Divide both sides by t4 to obtain

(
u/t2

)2 = t−4 + 20t−2 − 26 + 20t2 + t4 =
(

t − 1

t

)4

+ 24

(
t − 1

t

)2

+ 16.

Thus (t − (1/t), u/t2) is a rational solution of the equation

U 2 = T 4 + 24T 2 + 16, (16)

with T = 0 if and only if t = ±1. We shall show that there are no rational solutions of
equation (16) other than (T , U) = (0, ±4), which will prove our proposition.

We next eliminate the T 4 term from equation (16) by introducing a new variable
δ = T 2 − U . Thus U = T 2 − δ and T 4 + 24T 2 + 16 = (T 2 − δ)2, whence

(24 + 2δ)T 2 = δ2 − 16 = (δ − 4)(δ + 4), (17)

so (24 + 2δ)(δ − 4)(δ + 4) is a rational square. The further change of variable
δ = 8X − 4 makes (24 + 2δ)(δ − 4)(δ + 4) = (16X + 16)(8X − 8)(8X) = 210(X +
1)(X − 1)X, so we obtain a rational solution of

Y 2 = (X + 1)(X − 1)X = X3 − X. (18)

But Fermat already proved that the only solutions of equation (18) with both variables
rational are the three with Y = 0. Hence δ ∈ {4, −4, −12}. But δ = −12 is not pos-
sible in equation (17), and each of δ = ±4 makes T = 0 as claimed. This completes
the proof of our proposition. �

Fermat’s theorem occupies a pivotal point in the history of number theory: it settled
a centuries-old problem going back at least to Fibonacci; it yields the exponent 4 case
of Fermat’s last theorem, which is the only case for which we have a proof by Fermat
himself; it is also the only example we have of a proof by Fermat using his method
of descent; and this method remains the basis of our only technique for describing
the group of rational points on an elliptic curve (see [13, Chapters VIII and X, espe-
cially X.1, X.4, and X.6]). The result is sometimes given in one of the two following
equivalent forms.

1. The area of a right triangle whose sides are integers is not a square. This is how
Fermat recorded the result in the margin of his copy of Diophantus’ Arithmetica [12].
We noted already the sides of a right triangle are proportional to t2 − 1, 2t, t2 + 1
for some rational t ; the sides are positive when t > 1. The area is thus α2(t3 − t) for
some rational α, so the fact that this cannot be a square is a consequence of the fact
that Y 2 = X3 − X has no rational solutions with X > 1. Note that this shows only one
implication, but for the other direction we use the fact that Y 2 > 0 implies either X > 1
or −1 < X < 0, and in the latter case (−1/X, Y/X2) satisfies the same equation with
−1/X > 1.
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2. There is no nonconstant three-term arithmetic progression of squares whose com-
mon difference is a square. Such a progression would have the form x2 − y2, x2, x2 +
y2 for integers x, y with 0 < y < x, and then X = x2/y2 would satisfy X3 − X =
(zxz′/y3)2 where x2 − y2 = z2 and x2 + y2 = z′2. Again we have proven only the
implication that obtains the new formulation of the result from the impossibility of
Y 2 = X3 − X in nonzero X, Y ∈ Q. To go the other way, we may note that if X3 − X

is a nonzero square then (X2 − 2X − 1)2, (X2 + 1)2, (X2 + 2X − 1)2 is a three-term
arithmetic progression of squares whose common difference is the square 4(X3 − X).

The common difference of a three-term arithmetic progression of squares is said
to be “congruent” (because the common difference of an arithmetic progression was
called its “congruum”); so this form of Fermat’s theorem was stated as no [nonzero]
square is a congruent number.

We can now appreciate Dickson’s words on Fermat’s results at the start of chapter
XXII (“Equations of degree four” on pp. 615 ff.) of his History of the Theory of Num-
bers, Vol. II: Diophantine Analysis [3]. Departing from his usual telegraphic presenta-
tion, Dickson devotes more than a page to Fermat’s original proof and an introduction,
which we quote next:

Leonardo Pisano [=Fibonacci] recognized the fact, but gave an incomplete proof,
that no square is a congruent number (i. e., x2 + y2 and x2 − y2 are not both
squares) [. . . ] Four centuries later, Fermat2 stated and proved the result thus
implied by Leonardo: no right triangle with rational sides equals a square with
a rational side. The occasion was the twentieth of Bachet’s problems inserted at
the end of book VI of Diophantus: to find a right triangle whose area is a given
number A. [. . . ]

Fermat’s proof is of especial interest as it illustrates in detail his method of
infinite descent and as it presents the only instance of a detailed proof left by
him. [. . . ]

Footnote 2 refers to “Fermat’s marginal notes in his copy of Bachet’s edition of
Diophantus’ Arithmetica; Oeuvres de Fermat, Paris, 1, 1891, 340; 3, 1896, 271.”
See [7]. The ensuing reproduction of Fermat’s proof concludes with the sentence
“The margin is too narrow for the complete demonstration and all its developments”
which echoes the famous marginal note recording what we now know as Fermat’s last
theorem.

The case n = 4 of Fermat’s assertion on xn + yn = zn quickly follows from his
result on Y 2 = X3 − X. Indeed for rational y, z it is not possible for z4 − y4 to be
a nonzero square, let alone a fourth power, because then we could set X = (z/y)2,
and X3 − X = (z/y3)2(z4 − y4) would be a nonzero square. To complete this circle
of allusions we note that it was the paragraph on Pythagorean triangles in Diophantus
(whose parametrization we used in our solution of the Gion shrine problem) in whose
margin Fermat recorded that such triangles cannot have square area.

We conclude with some general remarks on Diophantine equations such as equation
(15), to give more context to the particular curve C and our determination of all its
rational points.

In general if D(t) is a nonconstant polynomial without repeated roots then the equa-
tion u2 = D(t) defines a hyperelliptic curve of genus g = � 1

2 deg D� − 1. (Note that
any polynomial D can be factored uniquely as F 2D1, where F is monic and D1 has no
repeated roots, and then D(t) is a square if and only if D1(t) is a square or F(t) = 0;
thus the assumption that D has distinct roots loses no real generality. Further, we use
the expansive sense of “hyperelliptic curve” that allows genus 1 (elliptic curve) and 0
(conic curve).) Hence our C has g = �8/2� − 1 = 3.
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Since g > 1, Faltings’ theorem (proof of the Mordell conjecture) [2] guarantees
that there are only finitely many solutions. Unfortunately both of Faltings’ proofs
[5, 6], and all later proofs based on them, are fundamentally “ineffective”: they prove
that the list of rational points is finite, but provide no general algorithm guaranteed
to compute this list. In some cases one can prove that a curve has no rational solu-
tions using elementary inequalities or congruences; for example, −1 − t4 is never a
square because it is negative for all t ∈ Q, nor is −1 + 3t4 by reduction modulo pow-
ers of 3 (or of 2). But these methods cannot apply to our C, because it does have a
few rational points outside the range 0 < t ≤ t0, such as (t, u) = (1, ±1). Once we
find a few rational points on C it is often very difficult to prove that there are no
others.

Fortunately our C was still tractable, thanks in part to having more automorphisms
than the “hyperelliptic involution” h : (t, u) ↔ (t, −u) shared by all hyperelliptic
curves. Because D(t) is an even polynomial, C also has the involution i1 : (t, u) ↔
(−t, u); because D is “palindromic” (the coefficients read the same in each direction),
it satisfies D(t) = tdeg DD(1/t), and since deg D is even this yields a further involu-
tion i2 : (t, u) ↔ (1/t, u/t4). (This involution fixes the points (±1, ±4), but pairs the
points (0, ±1) with “points of infinity” of C when C is regarded as a projective curve.)
Even these do not generate the full group of automorphisms of C, which includes also
the somewhat unexpected involution

i3 : (t, u) ↔
(

t + 1

t − 1
,

4u

(t − 1)4

)
; (19)

which switches the t = 0 and t = 1 points (and switches the t = −1 points with the
pair of points at infinity).

In general a curve u2 = D(t) with deg(D) = 8 has an action of i1 and i2 if and only
if

D(t) = αt8 + βt6 + γ t4 + βt2 + α

for some α, β, γ . The fractional linear transformation t �→ (t + 1)/(t − 1) conjugates
each of t �→ −t and t �→ 1/t to the other, and thus normalizes the group generated
by these two involutions. Hence t �→ (t + 1)/(t − 1) (which is itself an involution)
transforms a hyperelliptic curve u2 = αt8 + βt6 + γ t4 + βt2 + α into another curve of
the same form (as can also be seen by direct calculation). We thus tried this substitution
on our curve C, which has (α, β, γ ) = (1, 20, −26), hoping to find a simpler equation.
To our surprise we instead found C itself, and thus produced an extra automorphism
of C.

It can be shown that h, i1, i2, i3 do generate Aut(C); but we did not need this fact,
nor the involution (19) itself, to prove the proposition.

There are several choices of subgroups H of Aut(C) for which the quotient curve
E = C/H has genus 1. Unlike curves of genus > 1, a genus-1 curve may have either
finitely or infinitely many rational points; but when there are finitely many points we
can often list them all even when the list is nonempty. (In the remaining case of genus
zero, a smooth curve with a single rational point has a rational parametrization and
therefore has infinitely many rational points; so we cannot use genus-zero quotients
for our purpose.) Fortunately this happened for our C with H = {1, i1i2}. Since the
quotient map C → E takes rational points to rational points, we could then find all the
rational points on C by computing the preimages of each rational point of E. (There
are four rational points when we include points at infinity; of the four, three are finite
on the models (17, 18), and two on (16), with one of the other two mapping to the
point with δ = −12 in (17).) Indeed this is quite similar to the proof of the exponent 4
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case of Fermat: the curve x4 + y4 = z4 defines a projective plane curve F4 of genus 3
(though not a hyperelliptic one), with several involutions including i : (x : y : z) ↔
(−x : y : z), and the quotient curve C/{1, i} has genus 1 and admits a nonconstant
map to Y 2 = X3 − X. One can thus use Fermat’s result on this curve to find all rational
solutions of x4 + y4 = z4.

Naturally some relevant details are different between our approach and Fermat’s
exponent 4 case. It so happens that both curves have “good reduction outside 2”,
remaining smooth mod p for all odd primes p. For instance, for C this follows from
the fact that the discriminant of 1 + 20t2 − 26t4 + 20t6 + t8 is a power of 2 (namely
264). Thus the same is true for any quotient curve. But for the Fermat quartic, all the
quotient curves of genus 1 have only finitely many points; for example, if we took the
quotient by (x : y : z) ↔ (x : y : −z) we would reach Y 2 = X3 + X, and this curve
has only two rational points, one at infinity and the other at (0, 0), which is also proved
by Fermat’s method of descent. For our curve C, we had to be careful to avoid quo-
tients such as C/{1, i1} and C/{1, i2} which have genus 1 but infinitely many rational
points.

Acknowledgment The authors thank Tony Rothman, for his interest and helpful comments, and Hidetoshi
Fukagawa, for sharing with us a small piece of his life’s work on sangaku mathematics.

REFERENCES

[1] Ajima, N., Hirayama, A., Matsuoka, M. (1966). Naonobu Ajima’s Complete Works. Publication Committee
of Naonobu Ajima’s Complete Works. Tokyo: Fuji Tanki Daigaku Shuppanbu, Shōwa 41.
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Summary. We give a new solution to the famous Gion shrine geometry problem from eighteenth-century Japan.
Like the classical Japanese solution, ours is given in the form of a degree-ten equation. However, our polyno-
mial has the advantage of being much easier to write down. We also provide some additional analysis, includ-
ing a discussion of existence and uniqueness. Finally, we prove that the Gion shrine problem has no rational
solutions.
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Math Bite: When an Average of Averages is the Average

If you want to find the mean of a data set, you would not, say, split the data in
half, find the average of each half, and average those results. The average of a data
set is generally not obtained by averaging the averages of some of its subsets, unless
one considers all possible subsets of a fixed size!

In particular, suppose the data is given by {a1, ..., an}. Given 1 ≤ k ≤ n, there are(
n
k

)
subsets of size k, and any ai lies in

(
n−1
k−1

)
of them. Thus, averaging the averages

of all k-subsets produces

(n−1
k−1)(a1+···+an)

k(
n
k

) = a1 + · · · + an

n
,

via an application of the well-known identity n
(
n−1
k−1

) = k
(
n
k

)
.
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A Probability Perspective to a Combinatorics
Problem

HIDEO HIROSE
Data Science Research Center

Hiroshima Institute of Technology
h.hirose.tk@it-hiroshima.ac.jp

This paper gives a simple proof that the number of solutions to

x1 + x2 + · · · + xn ≡ k (mod p) (1)

is pn−1 for each k ∈ {0, 1, . . . , p − 1} = [p − 1], where xi ∈ [p − 1] for i = 1, . . . , n.
For example, when p = 2, and n = 2, then the solutions to x1 + x2 ≡ 0 (mod 2)

are (x1, x2) = (0, 0) and (1, 1), while the solutions to x1 + x2 ≡ 1 (mod 2) are
(x1, x2) = (0, 1) and (1, 0). The number of solutions is 22−1 = 2 in each case. As
another example, when p = 2, and n = 3, then the solutions to x1 + x2 + x3 ≡ 0
(mod 2) are (x1, x2, x3) = (0, 0, 0), (0, 1, 1), (1, 0, 1), and (1, 1, 0); and, the solu-
tions to x1 + x2 + x3 ≡ 1 (mod 2) are (x1, x2, x3) = (0, 0, 1), (0, 1, 0), (1, 0, 0), and
(1, 1, 1). In each case, the number of solutions is 23−1 = 4. It seems to be cumbersome
to write down the solutions for general p, k, and n.

Equation (1) is the same as

x1 + x2 + · · · + xn = k + jp (0 ≤ j < n), (2)

which can be regarded as an extension of the classic combinatorics problem of showing
that the number of nonnegative integer solutions to

x1 + x2 + · · · + xn = k (3)

is
(
n+k−1

k

)
, as in [2]. For example, the solution x1 = 2, x2 = 1, x3 = 3 to x1 + x2 +

x3 = 6 can be represented as 11 ∗ 1 ∗ 111, where the six 1s are allocated among the
8 (= 6 + 3 − 1) places. This is equivalent to the allocation of 2 (= 3 − 1) “stars”
(given by the *s) into the eight places. (This method is referred to as the “stars and
bars” method in [1].) The number of ways to allocate the k 1s among the n + k − 1
places is

(
n+k−1

k

)
. However, the restriction of the xi’s to [p − 1] seems to preclude this

approach to determine the number of solutions to equation (1).
A more general problem, sometimes called the “donut shop problem,” could be use-

ful to find the number of nonnegative integer solutions to equation (3) under inequality
constraints, where 0 ≤ ai ≤ xi ≤ bi for i = 1, . . . , n, as considered in [1, 8]. This is
equivalent to the problem of finding the number of nonnegative integer solutions to
y1 + y2 + · · · + yn = k − s, where 0 ≤ yi ≤ bi − ai for each i and s = ∑n

i=1 ai . To
obtain the solution, we can use the inclusion–exclusion principle, as in [3], to get the
following formula

|A1 ∪ · · · ∪ An| =
∑

∅�=I⊆{1,...,n}
(−1)|I |+1|AI |, (4)

where | · | denotes the number of elements in a set and AI = ∩i∈IAi .

Math. Mag. 92 (2019) 123–125. doi:10.1080/0025570X.2019.1549890 c© Mathematical Association of America
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For example, when p = 6, x1 + x2 ≡ 1 (mod 6), and xi ∈ [5] for each i, there
are two cases: x1 + x2 = 1 and x1 + x2 = 7. In the former case, the number of
cases is |U | = (2+1−1

1

) = 2, where |U | represents the number of solutions without
any restrictions; here U can be thought of as the universal set. In the latter case,
|U | = (2+7−1

7

) = 8, |A1| = (2+(7−6)−1
7−6

) = 2 = |A2|, and |A1 ∩ A2| = ∅, thus the num-
ber of solutions is 8 − 2 − 2 = 4. By combining these two cases, the total number of
solutions is 2 + 4 = 6.

Similarly, when x1 + x2 ≡ 2 (mod 6), we deal with two cases: x1 + x2 = 2 and
x1 + x2 = 8. In the former case, the number of solutions is |U | = (2+2−1

2

) = 3. In
the latter case, |U | = (2+8−1

8

) = 9, |A1| = (2+(8−6)−1
8−6

) = 3 = |A2|, and |A1 ∩ A2| = ∅,
thus the number of solutions is 9 − 3 − 3 = 3. By combining these two cases, there
are 3 + 3 = 6 solutions.

This method seems to be cumbersome, too. Determining the number of solutions to
equation (1) seems to be tough to solve using a combinatorial approach.

Consider the following probabilistic interpretation of x1 + x2 ≡ k (mod 6). We
define a rule to move counterclockwise around the unit circle starting at (1, 0). Roll
a six-sided die and when it shows j dots, then move (j − 1)(2π/6) (j = 1, 2, . . . , 6)

counterclockwise along the circumference from your current position. What is the
probability that you will be at position k(2π/6) (k = 0, 1, . . . , 5) along the unit circle
after throwing the die two times?

In the next section, I show how counting the number of solutions to equation (1) is
easier in the probabilistic context.

Probability problem

Suppose that the probability question from the previous section is generalized to
a p-sided die, where rolling a j ∈ [p − 1] results in moving counterclockwise
(j − 1)(2π/p) along the circumference. Each xi from equation (1) corresponds to
a roll of the p-sided die. Take a second to think about how determining the probability
of landing on k(2π/p) after n rolls is equivalent to the number of solutions to equation
(1).

Theorem 1 (Probability). Let Xi be the random variable for which P(Xi = j) = 1
p

for j = 0, 1, . . . , p − 1. Define Sn = ∑n

i=1 Xi . Then, P(Sn ≡ k (mod p)) = 1
p

for
k = 0, 1, . . . , p − 1.

Proof. When you throw a p-sided die one time, the probability that you are at the
position k(2π/p) is 1

p
for all k (k = 0, 1, . . . , p − 1). This means that a second throw

provides equal probability to each position you proceed regardless of the last position;
this is the Markov property. Therefore, throwing a die n times also provides equal
probability of 1

p
to each position of k(2π/p) for all k (k = 0, 1, . . . , p − 1). �

Since each Xi in Theorem 1 has p possibilities, the total number of cases of
X1, X2, . . . , Xn is pn. Because the probability P(Sn ≡ k (mod p)) = 1

p
, then the

total number of cases in which Sn ≡ k (mod p) is pn−1 for all k ∈ [p − 1].

Combinatorial problem

To interpret the probability problem to the combinatorial problem, we only regard
xi ∈ {0, 1, . . . , p − 1}, (i = 1, . . . , n) in equation (1) as the samples from a discrete
uniform distribution. This delivers the answer to the combinatorial problem.
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Theorem 2 (Combinatorics). For k ∈ [p − 1] and xi ∈ [p − 1] for each i, there are
pn−1 solutions x = (x1, x2, . . . , xn) to

x1 + x2 + · · · + xn ≡ k (mod p).

Conclusion

In this note, we provided a relatively easy solution to a problem in combinatorics via
a probabilistic approach. There are other instances in which probabilistic proofs of
nonprobabilistic results are easier, too. See, for example, Rosalsky [7], Peterson [6],
and Kataria [4, 5].
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Proof Without Words: Independent Sets in
Grid graphs and Tilings of Aztec Diamonds
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The Aztec diamond of order n is the set of lattice squares [a, a + 1] × [b, b + 1]
(a, b ∈ Z) that lie completely inside the tilted square |x| + |y| ≤ n + 1. An indepen-
dent set in a graph is a collection of vertices so that no pair is adjacent.

Theorem 1. The number of ways to tile the Aztec diamond of order n with rectangles
one of whose dimensions is one equals the number of independent sets in the graph
P2n �P2n (the Cartesian product of the path graph on 2n vertices with itself).

Figure 1 The tilted graph P10 �P10 is laid on top of the Aztec diamond of order 5; the
gray dots in the graph form an independent set.

More information about these numbers is in sequence A006506 in the OEIS [3]. A
classic result for tiling of Aztec diamonds and dominoes is given by Elkies et al. [1,2].
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Summary. A visual proof that the number of independent sets in the grid graph P2n �P2n equals the number
of tilings of the Aztec diamond An with rectangles where at least one of the dimensions is one.
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Math Bite: A Simple Proof of the RMS–AM Inequality

The following quadratic equation has no real roots:

(x + a)2 + (x + b)2 = 0, a, b ∈ R, a �= b. (1)

If we expand (1) and use the fact that it’s discriminant is negative, we get 2ab <

a2 + b2, which is a geometric mean–root-mean square (RMS) inequality for two
numbers. We modify this simple observation to prove the RMS–arithmetic mean
(AM) inequality of the following theorem.

Theorem. For real numbers a1, . . . , an,

√
a2

1 + · · · + a2
n

n
≥ a1 + · · · + an

n
.

Proof. The quadratic equation

(x + a1)
2 + · · · + (x + an)

2 =nx2 + 2(a1 + · · · + an)x + a2
1 + · · · + a2

n =0

has a real solution if and only if x = −a1 = · · · = −an. Hence, the quadratic equa-
tion has at most one solution and therefore it has a discriminant D ≤ 0. Because
D ≤ 0, we get 4(a1 + · · · + an)

2 − 4n(a2
1 + · · · + a2

n) ≤ 0 which is equivalent to
(a1 + · · · + an)

2 ≤ n(a2
1 + · · · + a2

n), proving the result. �

—Contributed by Konstantinos Gaitanas (MR Author ID: 1103989)
National Technical University of Athens, 15780 Athens, Greece
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Divisibility Tests Unified: Stacking the
Trimmings for Sums

EDWIN O’SHEA
James Madison University

Harrisonburg, VA 22807
osheaem@jmu.edu

The most well-known divisibility tests are the last digits tests for 2 and 5, the sum
of digits test for 9, and the alternating digit sum for 11, but the oldest divisibility test is
one for deciding divisibility by 7. That test is at least fifteen hundred years old and is
prescribed in the Talmud [8, Abodah Zarah 9b] as follows: “If one does not know what
the year is in the Sabbatical cycle of seven years, let him... put aside the hundreds... and
convert the remainder into Sabbatical Cycles [of seven years each] after adding thereto
two years for every complete century; what is left over will give him the number of the
given year in the current Sabbatical Cycle.” In algebraic notation, the remainder when
7 is divided into a given integer, written as x + 100 · y, equals that when 7 is divided
into x + 2 · y. For example, to remainder when 7 divides 32184 = 84 + 100 · 321
equals that when 7 divides 84 + 2 · 321 = 726.

The Talmud’s test is the first of seventy or so listed in Dickson’s encyclopedic
History of the Theory of Numbers [3, Chapter XII] and includes tests by luminar-
ies such as Fibonacci, Lagrange, Pascal, and Sylvester. Tests that reinterpret those
recorded by Dickson can be found in a number of relatively recent papers [2], [4],
[6], [9] and the sources referenced therein. Among the tests is one for 7 by Zbikowski
[10] asserting that an integer a, written in the form a = 10ā + a0, is divisible by 7
if and only if 7 divides the integer ā − 2a0. For example, the test reduces 32184 to
3218 − 2 · 4 = 3210, which can be applied again, reducing 3210 to 321, and again,
reducing 321 to 30; since 7 does not divide 30 it does not divide 32184.

This trimming procedure, the given integer a being “trimmed” to another with one
digit less, is universally presented as being cut from a different cloth from the sum
of digits tests for 9 and 11. We claim that this is not so by deriving a family of sum-
ming tests, due to Khare [5], from Zbikowski’s family of trimming tests. We can also
show that the best known summing tests, the binomial tests, can also be derived from
an adapted form of Zbikowski’s tests. To the best of our knowledge this marriage of
trimming and summing tests is new. ∗

In homage to the school venue where many of us were first exposed to divisibility
tests, we will only require basic properties of the integers with a dash of the induction
axiom; we will use neither the binomial theorem nor modular arithmetic. Our central
tool is stacking, a decimal representation that is flexible enough to respect a six-year
old’s choosing of 10 pennies over one dime. The well-known sum and alternating sum
of digits tests for 9 and 11 follow as corollaries. We close with a brief comparative
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analysis of Khare’s tests, the binomial summing tests and Zbikwoski’s trimming tests,
and how these tests in base 10 generalize to any base.

Defining Divisibility Tests

Rather than operate under a Justice Potter-like assumption [7], that we all know a
divisibility test when we see it, let us propose a decent definition. In most basic terms,
a divisibility test for an integer q should be a function fq : Z → Z such that q divides
a if and only if q divides fq(a) for every integer a. The identity function fq(a) = a

is easy to compute but q dividing fq(a) is no easier to decide than if q divides a. The
computation of the remainder in the classical division theorem, fq(a) = r , might have
the property that q divides r is easier to decide than q divides a but the computation
of fq(a) is likely to be mentally difficult. We’d like to propose that a divisibility test
fq(a) should be easy to compute and it ought to be easier to decide if q divides fq(a)

than if q divides a. The terms “easy” and “easier” are ambiguous but one criterion
for “easy” is that fq(a) is computable with relative ease. “Easier” could also mean a
number of things but a desirable property might be that the number of digits in fq(a)

is less than that in a. Note that any test fq is iterative, with f 2
q (a) = fq(fq(a)) being a

test too for q dividing a, and f 3
q (a) = fq(fq(fq(a))) too, etc.

We promised to only use basic divisibility properties to derive our tests; no modular
arithmetic or binomial theorem. To that effect, the following claims appear in number
theory texts like Andrews [1].

(1) If two integers a and s are both divisible by q then their sum and
difference, a ± s are also divisible by q.

(2) If q is relatively prime to 10 and q divides 10 · m then q divides m.

We can write an integer a as a = anan−1 . . . a2a1a0 = ∑n

k=0 10k · ak, where each
0 ≤ ak ≤ 9. For shorthand, we denote the number of digits of a, n + 1, as length(a).
Letting a[k,l] := akak−1 . . . al+1al, we can always write a = 10k · a[n,k] + a[k−1,0]. As a
special case, let ā denote a[n,1] and write

a = 10 · ā + a0 and similarly, q = 10 · q̄ + q0.

For example, if a = 32184 then a4 = 3, a3 = 2, a2 = 1, a1 = 8 and a0 = 4. The length
of a is 5. We can write 32184 in a variety of ways including 102 · a[4,2] + a[1,0] =
102 · 321 + 84 and 10 · ā + a0 = 10 · 3218 + 4.

It is left as an exercise to apply claim (1) to derive the last digit tests f2(a) =
f5(a) = a0. More generally, f2k (a) = f5k (a) = a[k−1,0] are divisibility tests for q =
2k and q = 5k. For example, 8 divides a = 32184 because 8 divides a’s last three
digits, f23(32184) = 184. With the above notation, the Talmud test is Tal7(a) = 2 ·
a[n,2] + a1a0. It too can be proved using claim (1): letting s = 98 · a[n,2], 7 divides
a = 100 · a[n,2] + a1a0 if and only if it divides a − s = 2 · a[n,2] + a1a0.

Zbikowski’s Trimming Tests as One Test

Zbikowski’s test for 7 is T7(a) = ā − 2 · a0. On an example like T7(32184) = 3210
we see that T7 takes a given a and “trims” it to another integer of length one less than
the original a. This motivates the following definition:

(Trimming) A divisibility test fq is called a trimming test if the length
of fq(a) is one less than the length of a, for almost every a.

We say “almost” because if a is already a single digit there is nothing to be done
and there are instances, like T7(49) = −14, where the test maps a two-digit number to
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another two-digit number. We leave it as an exercise to show that if length(a) ≥ 3 then
T7(a) has shorter length than a.

Here’s why T7 works on our running example of a = 32184. By claim (1), we can
subtract any multiple of 7 from 2184 and the result will be divisible by 7 if 32184 itself
is divisible by 7, so choose a multiple of 7 that when subtracted from 32184 leaves a
zero in the last digit. Clearly, 21 times the last digit of 32184, namely 21 · 4 will serve
this role. The difference is 32184 − 21 · 4 = (10 · 3218 + 4) − ((20 + 1) · 4). The 4’s
cancel leaving a multiple of 10. By claim (2), we can trim that right-most zero from
32184 − 21 · 4 = 32100 to get 3210 and our decision of whether 7 divides 32184
becomes equivalent to deciding if 7 divides 3210.

Zbikowski [10] extended this argument for every a and for any q with last digit
equal to 1, 3, 7, or 9. These tests have received considerable attention in recent papers
by Zazkis [9], Cherniavsky and Mouftakhov [2], and Ganzell [4] and the reader can
see a derivation of these tests there. We will not derive these tests here but wish to
recast these tests as one test. First, we consider Zbikowski’s tests as four different
cases, followed by examples.

Theorem 1. (Zbikowski [10]) For every q with last digit equal to either 1, 3, 7, or 9,
there is a trimming test Tq(a) given in the following table.

q0 1 3 7 9

cq 1 −3 3 −1

Tq(a) = tq(a, cq) ā − q̄a0 ā + (3q̄ + 1)a0 ā − (3q̄ + 2)a0 ā + (q̄ + 1)a0

The following examples demonstrate Zbikowski’s tests.

• If q = 21 then q̄ = 2 and T21(a) = ā − 2 · a0 = ā − 2a0.
For a = 32184, T21(32184) = 3218 − 2 · 4 = 3210 and T21(3210) = 321.

• If q = 13 then q̄ = 1 and T13(a) = ā + (3 · 1 + 1)a0 = ā + 4a0.
For a = 32184, T13(32184) = 3218 + 4 · 4 = 3234 and T13(3234) = 339.

• If q = 17 then q̄ = 1 and T17(a) = ā − (3 · 1 + 2)a0 = ā − 5a0.
For a = 32184, T17(2184) = 3218 − 5 · 4 = 3198 and T17(3198) = 279.

• If q = 39 then q̄ = 3 and T39(a) = ā + (3 + 1)a0 = ā + 4a0.
For a = 32184, T39(32184) = 3218 + 4 · 4 = 3234 and T39(3234) = 339.

As expected the above examples trim the length by one per iteration. The examples
are for q’s with two digits but q can be of any length, like T181 = ā − 18 · a0.

Absent from previous expositions on Zbikowski’s tests is that the four tests reduce
to one. First, it appears that T13 = T39 and T7 = T21. Using the table above, one can
show the following.

(3) If q0 = 3 or 7 then Tq(a) = T3q(a).

This reduces our four tests to only two, those Tq’s for which q0 = 1 or q0 = 9. With
[x] denoting the nearest integer to x we leave it to the reader, using the table above, to
confirm the following.

(4) Tq(a) = ā + ωq · a0 where ωq =
{ − [q/10] if q0 = 1

[q/10] if q0 = 9

}
.

In summary, Zbikowksi’s test reads easily as one test: If an odd divisor q ends in
1 or 9 then divide q by 10 and round the result to the nearest integer; attach a sign
of minus or plus to the result depending on whether you have rounded down or up
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for the signed weight ωq . If q ends in 3 or 7 then triple q and do as before; that is,
ωq = ω3q . Zbikowski’s test for q dividing a is then everything but the last digit of a

plus the signed weight ωq times the last digit of a.
For example, to write a divisibility test for q = 17 we triple 17 to get 51. For the

signed weight ω17, divide 51 by 10 and round to the nearest integer to produce 5; since
we rounded down the signed weight must be negative and so −5 is the weight for
the test for q = 17. That is, T17(a) = ā − 5a0. Likewise, T79 = ā + 8a0 since 79/10
rounds to 8 and the weight is positive since we rounded up (not down) to 8.

Using Zbikowski’s trimming test Tq(a) = ā + ωq · a0 we shall derive Khare’s gen-
eral weighted sum of digits tests [5]. Khare’s summing tests Sq match the usual tests
for 9 and 11 but differ from the better known binomial tests for all other q. Nonethe-
less, we can also derive the usual binomial tests by adapting Zbikowski’s tests to trim
from the left rather than the right. This is all achieved by a form of child’s play we call
stacking.

Stacking: Preferring Pennies to Dimes

The trimming tests T9(a) = ā + a0 and T11(a) = ā − a0 are not the same yet look
similar to the sum and alternating sum of digits tests, respectively. These sum of digits
tests are usually verified by modular arithmetic—geometric series suffice too—but the
trimming tests have only used the basic divisibility properties (1) and (2). From the
trimming tests Tq we will derive the usual tests for 9 and 11 and Khare’s summing
tests for every q. We should first define what we mean by a summing test.

(Summing) A divisibility test fq(a) = ∑n

j=0 γjan−j is called a
summing test for q if each γj ∈ Z.

Let’s investigate the trimming test T9(a) = ā + a0 with our running example a =
32184 and see if we can get some ideas on how to derive the sum of digits test 3 + 2 +
1 + 8 + 4. The trimming test applied iteratively is

32184
T9−→ 3218 + 4 = 3222

T9−→ 322 + 2 = 324
T9−→ 32 + 4 = 36

T9−→ 3 + 6.

The summing and recursive trimming tests yield a different final output. We claim
that they are equal provided that a “stacking” procedure intervenes. To explain the
main idea, let’s start with a non-trivial theorem, that of every positive integer has
a unique base 10 representation. This is mathematically respected but colloquially
malleable. When writing checks we are allowed to express 1562 in unambiguous but
different ways, both as “one thousand, five hundred and sixty-two” and as “fifteen hun-
dred and sixty-two.” The former is in keeping with strict mathematical practice yet the
latter is customary even though 15, the coefficient (allowing ourselves to call it that)
of one hundred in the latter is not between 0 and 9.

In the same vein, when adults add two integers, like 3218 + 4 = 3222 that result
from T9(32184), we simplify in concordance with unique representability. Computing
the sum 3218 + 4 is equivalent to giving an adult 3218 cents as 321 dimes and 8
pennies and giving them a further 4 pennies, with which the adult opts to exchange
8 + 4 = 12 pennies for 1 dime and 2 pennies for a total of 322 dimes and 2 pennies.
We are raised to value efficiency: the fewer coins, the better. However, given the same
choice, a six-year old may opt to keep the 12 pennies. She knows that 10 pennies and
1 dime both equal 10 cents but 10 pennies are far more fun to play with and easier to
share than a dime and so she chooses to stack the pennies together. In other words, she
might opt for 321 dimes and 8 + 4 = 12 pennies, that is, 3218 + 4 = 10 · 321 + 8 +
4 = 10 · 321 + (8 + 4). Depending on her mathematical formalism, she may define
stacking the pennies as follows.
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(Stacking) Given an integer r = 10r̄ + r0 and a (possibly empty) sum
of single-digit integers s write the stacking of their sum

r + s
Stack==== 10r̄ + (r0 + s).

For short, we write the stacking of r and s as Stack(r + s). For example, stacking
3218 and 4 together equals the representation Stack(3218 + 4) = 10 · 321 + (8 + 4).
Since stacking is nothing more than an alternative representation of r + s, it follows
that q divides r + s if and only if q divides Stack(r + s).

Stacking Zbikowski Trimmings for Khare’s Summing Tests

With stacking in mind, let’s iteratively trim as before with T9 but now follow each
trimming with a stacking.

32184
T9−−→ 3218 + 4

Stack==== 10 · 321 + (8 + 4)
T9−−→ 321 + (8 + 4)

Stack==== 10 · 32 + (1 + 8 + 4)
T9−−→ 32 + (1 + 8 + 4)

Stack==== 10 · 3 + (2 + 1 + 8 + 4)
T9−−→ 3 + (2 + 1 + 8 + 4)

Stack==== (3 + 2 + 1 + 8 + 4).

The above says that

(Stack ◦ T9)
4(32184) = (3 + 2 + 1 + 8 + 4) = 18 =: S9(32184),

where the latter denotes the usual sum of the digits test for 9. Let us see if iteratively
trimming and stacking with T7(a) = ā + (−2)a0 can provide a sum-like test for q = 7
using our running example a = 32184.

32184
T7−−→ 3218 + (−2) · 4

Stack==== 10 · 321 + (8 + (−2) · 4)
T7−−→ 321 + (−2) · (8 + (−2) · 4)

Stack==== 10 · 32 + (1 + (−2) · (8 + (−2) · 4))
T7−−→ 32 + (−2) · (1 + (−2) · (8 + (−2) · 4))

Stack==== 10 · 3 + 2 + (−2) · (1 + (−2) · (8 + (−2) · 4))
T7−−→ 3 + (−2)(2 + (−2) · (1 + (−2) · (8 + (−2) · 4)))

Stack==== 3 + (−2)(2 + (−2) · (1 + (−2) · (8 + (−2) · 4))).

In other words, (Stack ◦ T7)
4(32184) = 3 + (−2)12 + (−2)2 · 1 + (−2)3 · 8 +

(−2)4 · 4. The above examples for q = 7 and q = 9 with a = 32184 suggest summing
tests with γj = (−2)j = ω

j

7 and γj = 1 = ω
j

9 for 7 and 9, respectively. We claim this
holds in general.

Theorem 2. If Tq = ā + ωqa0 is a trimming test for q then Sq(a) := ∑n

j=0 ωj
qan−j is

a summing test for q.

The tests Sq were presented in 1997 by Khare [5] but their modular arithmetic proof
does not involve trimming tests. Briefly, Khare’s construction begins by choosing γq as
the minimum residue representative of the inverse of 10 modulo q. That is, γq ≡ 10−1

mod q of smallest size. Khare then proposes Sq = ∑n

j=0 γ j
q an−j is a test by virtue of

γ n
q a =

n∑
j=0

γ n
q 10j aj ≡ Sq(a) mod q.
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It is straightforward to check that Khare’s γq equals Zbikowski’s ωq . Our derivation
of Khare’s tests from Zbikowski’s tests uses neither modular arithmetic nor the bino-
mial theorem and it unifies the trimming and summing families. Before proving the
result, let’s appreciate Khare’s tests for some examples on a = 32184:

• S7(32184) = 3 + (−2) · 2 + (−2)2 · 1 + (−2)3 · 8 + (−2)4 · 4 = 3
• S9(32184) = 3 + 1 · 2 + 12 · 1 + 13 · 8 + 14 · 4 = 18.
• S11(32184) = 3 + (−1) · 2 + (−1)2 · 1 + (−1)3 · 8 + (−1)4 · 4 = −2.
• S17(32184) = 3 + (−5) · 2 + (−5)2 · 1 + (−5)3 · 8 + (−5)4 · 4 = 1518.
• S39(32184) = 3 + 4 · 2 + 42 · 1 + 43 · 8 + 44 · 4 = 1563.

Proof of Theorem 2 by Trimming and Stacking. We will show, by induction on the
length of a, that Sq(a) = (Stack ◦ Tq)

n(a) whenever a has length n + 1.
If n = 1 then a = a1a0 has length two and Stack(Tq(a1a0)) = Stack(ā + ωqa0) =

a1 + ωqa0 as claimed. Assume that Sq(a
′) = (Stack ◦ Tq)

n−1(a′) for every a′ with
length n and consider any integer a = anan−1 . . . a2a1a0 with length n + 1. Applying
Stack ◦ Tq to this a results in Stack(Tq(a)) = Stack(ā + ωqa0) = 10a[n,2] + (a1 +
ωqa0), an integer with n digits with last digit equal to (a1 + ωqa0) to which the induc-
tion hypothesis applies; hence,

(Stack ◦ Tq)
n(a) = (Stack ◦ Tq)

n−1(Stack ◦ Tq(a))

= (Stack ◦ Tq)
n−1(10a[n,2] + (a1 + ωqa0))

= Sq(10a[n,2] + (a1 + ωqa0))

=
n−2∑
j=0

ωj
qan−j + ωn−1

q (a1 + ωqa0)

=
n−2∑
j=0

ωj
qan−j + ωn−1

q a1 + ωn
qa0 =

n∑
j=0

ωj
qan−j = Sq(a). �

(Left) Stacking the (Left) Trimmings for Binomial Summing Tests

It would be remiss not to mention the most well-known summing tests, those that
follow from the binomial identity. We wish to derive the binomial tests from an adapted
form of Zbikowski’s tests that trim from the left instead of the right, further solidifying
the unification of trimming and summing tests.

The binomial tests are developed by applying the binomial theorem to the standard
expression for a modulo q,

a =
n∑

j=0

(q + (10 − q))jaj ≡
n∑

j=0

(10 − q)jaj =: Bq(a) mod q.

The well-known tests for 9 and 11 are B9 and B11 and are usually motivated in this
fashion. The binomial test for 7 is B7(a) = ∑n

j=03j aj and for, say, 39 it is B39(a) =∑n

j=0(−29)jaj . We claim that these tests can be developed via a recursive trimming
and stacking procedure akin to the derivation of Khare’s tests from Zbikowski’s.

On our main example, testing if 7 divides 31284, notice that we can rewrite 32184 as
103((7 + 3) · 3 + 2) + 184. The term in brackets is regarded as a non-traditional coef-
ficient of 103 just as we did in stacking (on the right) earlier. For testing divisibility by
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7 we can cast off the 7 in the bracketed term before distributing, so 7 divides 32184
if and only if 7 divides 103((3) · 3 + 2) + 184 = (11)184. As before, this last num-
ber might be how we would write a check, writing the integer longhand as “eleven
thousand, one hundred, and eighty-four.”

Repeating again, (11)184 = 102(11(7 + 3) + 1) + 84 reduces to 102(11(3) + 1) +
84 = (34)84, or “thirty four hundred and eighty-four”. Repeating once more, (34)84
reduces to (3 · 34 + 8)4 = (110)4 which, repeating again, reduces to (334). In other
words, 7 divides 32184 if it divides 334. We can repeat this process again on 334 itself,
should we wish, and it would equal 32 · 3 + 31 · 3 + 4 = 40. We can conclude that 7
does not divide 32184.

The example motivates an adapted version of Zbikowski’s tests Tq and the Stack
function, which we will call left trim, LTq and left stack, LStack. It is immediate that

LTq(a) := 10n−1(10 − q)an + a[n−1,0]

is a test for q and that

LStack(10n−1(10 − q)an + 10n−1an−1 + a[n−2,0]) = ((10 − q)an + an−1)a[n−2,0]

provides the same flexibility that the original Stack function provided. Here is a more
careful presentation of our main example with this notation.

32184
LT7−−−→ 103 · (3 · 3) + 2184

LStack===== (3 · 3 + 2)184
LT7−−−→ 102 · 3 · (3 · 3 + 2) + 184

LStack===== (32 · 3 + 3 · 2 + 1)84
LT7−−−→ 101 · 3 · (32 · 3 + 3 · 2 + 1) + 84

LStack===== (33 · 3 + 32 · 2 + 3 · 1 + 8) + 4
LT7−−−→ 100 · 3 · (33 · 3 + 32 · 2 + 3 · 1 + 8) + 4

LStack===== (34 · 3 + 33 · 2 + 32 · 1 + 3 · 8 + 4) = 334.

Theorem 3. The binomial test Bq(a) equals (LStack ◦ LTq)
n(a).

The proof is very similar to that of Theorem 2, inducting on the length of a and
trimming and stacking on the left as we did previously on the right. We leave the
details as an exercise.

Closing Remarks

Starting with the test for 7 and using only elementary tools, we reduced Zbikowski’s
tests to a single trimming test for all integers. From Zbikowski’s tests we derived
Khare’s summing tests as well as the binomial tests, adding only a dash of the induction
axiom to our basic divisibility criteria. The two families of divisibility tests, trimming
and summing, are much closer than initially meets the eye.

Khare’s tests are vastly preferable to the binomial tests and, in practice, the trim-
ming tests are superior to both summing tests. The weights in Khare’s tests scale down
the original divisor q by a factor of 10 or 10/3 whereas the binomial tests have weights
that are the difference of q with 10. For example, Khare’s S39(a) = ∑n

j=04j aj is prefer-
able to the binomial B39(a) = ∑n

j=0(−29)jaj . The practice of Zbikowski’s trimming
is better than both as it avoids the mental computation of high powers of ωq , relying
only on multiplying the last digit of an integer a by ωq followed by a straightforward
subtraction and then recursively repeating this procedure.
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For Zbikowski’s tests a ≡ 10−1Tq(a) mod q and since stacking changes the rep-
resentation of the number a but not a itself, then a ≡ ωqTq(a) and a ≡ ωn

qSq(a)

mod q whenever a has length n + 1. In contrast, part of the appeal of the binomial
tests Bq is its preservation of remainders.

Khare also generalized the base b = 10 to tests Sq for q in any base b. If q and b

are co-prime then the ωq term is precisely the least residue of ωq ≡ b−1 mod q and
there are last-digits tests for all factors of b. Indeed, this article could be written for a
general base b and the results would hold as one would expect.

Finally, while most tests are of the trimming and summing variety, there are tests
that are not equivalent to those outlined here, like the Talmud test Tal7. Dickson [3,
Chapter XII] has many gems not discussed here and independently deriving each of
them and understanding the some of the original sources would make for an excellent
senior project.
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In this paper, we pursue inductive principles of ordered sets. To get a sense of what
this means, consider the principle of mathematical induction. When applied, one thinks
in terms of families of statements P(n) indexed by the natural numbers N0 = N ∪
{0} = {0, 1, 2, . . .}, but the cleanest enunciation is in terms of subsets. We call a subset
S ⊆ N0 inductive if it satisfies both of the following properties:

(MI1) We have 0 ∈ S.
(MI2) For all n ∈ N0, if n ∈ S, then also n + 1 ∈ S. The principle of mathematical

induction is that N0 has no proper inductive subset. (In this form, induction appears
as the last and most important of the Peano Axioms.) To prove that P(n) holds for all
n ∈ N0 “by induction” one shows that the set S = {n ∈ N0 | P(n) holds} is inductive,
and thus S = N0.

In the next section, we work in a closed, bounded interval [a, b] on the real line. We
define an inductive subset S ⊂ [a, b] and state and prove the principle of real induction
(Theorem 1): there are no proper inductive subsets of [a, b]. Just as mathematical
induction is a powerful technique for proving families of statements indexed by the
natural numbers, real induction can be used to prove families of statements indexed
by intervals on the real line. This has applications in elementary analysis, especially to
the basic interval theorems concerning a continuous function f : [a, b] → R. Students
in a first real analysis course often find the standard proofs of these results hard to
absorb, understand and remember. Proofs by mathematical induction have a common
scaffolding that gives students a place to start, and so too do proofs by real induction: if
one can “find the induction hypothesis,” then the proof dissects into more manageable
goals.

Comparing the real induction proofs of these results to the more standard proofs,
one gets the sense that real induction functions as a sort of alternative to Dedekind’s
completeness axiom: every subset of R that is nonempty and bounded above has a
supremum.

Recent years have seen the rise of a program that Propp has called real analysis
in reverse [24] (see also [7, 30] and the references cited therein)—given a result of
real analysis that can be enunciated in any ordered field, one asks whether the truth
of that theorem in an ordered field implies Dedekind completeness—in other words,
forces that ordered field to be isomorphic to R. (More ambitiously, one could seek to
characterize the class of ordered fields in which that theorem holds.) Our definition of
an inductive subset of [a, b] makes sense for any elements a < b in an ordered field,
and it turns out that the absence of proper inductive subsets of [a, b] is equivalent to
Dedekind completeness. In other words, real induction characterizes R among ordered
fields.

After the section on real induction, we go further, giving a definition of an inductive
subset of any ordered set and showing the principle of ordered induction: the nonexis-
tence of proper inductive subsets is equivalent to Dedekind completeness. Since well-
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ordered sets are Dedekind complete, real induction holds in any well-ordered set, and
this recovers the principle of transfinite induction. Especially, N0 is well-ordered, and
this extra special case recovers the principle of mathematical induction. An ordered
space can be endowed with a canonical order topology, and ordered induction is a
natural tool for exploring the interplay between certain topological properties of order
topologies and completeness properties of the order. This material could be used in a
general topology course.

And it has: in 2015 I taught such a course at the advanced undergraduate level in
which I began with the topology of R, including real induction, and spent some time
on both order topologies and metric spaces—each of which generalizes and abstracts
the real numbers, but in different ways—before moving on to topological spaces in
general. This material also has a certain dialectic appeal, as it effects a synthesis of
discrete and continuous induction, and in this regard could be of broad interest. The
material on ordered induction is more abstract than that on real induction—necessarily
so, since the unification afforded by abstraction is the major payoff. We have strived to
make it accessible to the broadest possible audience. All that is assumed is the notion
of a topological space; order theory and the connections between order and topology
are developed from scratch.

Although it is natural to speak of these various forms of induction as axioms, our
interest in them is not meta-mathematical. Rather, we seek to expose new proof tech-
niques. The potential applicability of a good proof technique should be open-ended,
not circumscribed in advance. In this regard, we have left some applications of real
induction as challenges to the reader and also stated some problems for which I do
not know definitive solutions. I hope thereby to entice the reader into the pleasure of
independent or novel discovery, a pleasure this topic has afforded me several times
over the years.

Real induction

Let a < b be real numbers. We define a subset S ⊆ [a, b] to be inductive if:
(RI1) We have a ∈ S.
(RI2) If a ≤ x < b, then x ∈ S ⇒ [x, y] ⊆ S for some y > x.
(RI3) If a < x ≤ b and [a, x) ⊆ S, then x ∈ S.

Theorem 1 (Principle of real induction). For a subset S ⊆ [a, b], the following are
equivalent:
(i) S is inductive.
(ii) S = [a, b].

Proof. (i) ⇒ (ii). Let S ⊆ [a, b] be inductive. Seeking a contradiction, suppose S ′ =
[a, b] \ S is nonempty, so inf S ′ exists and lies in [a, b].

Case 1. Suppose inf S ′ = a. By (RI1) we have a ∈ S, so by (RI2), there exists
y > a such that [a, y] ⊆ S. Thus y is a greater lower bound for S ′ than a = inf S ′, a
contradiction.

Case 2. Suppose a < inf S ′ ∈ S. If inf S ′ = b, then S = [a, b]. Otherwise, by (RI2)
there exists y > inf S ′ such that [inf S ′, y] ⊆ S. Also, because [a, inf S ′) ⊂ S, then
[a, y] ⊂ S and thus again y is a greater lower bound for S ′ than inf S ′, a contradiction.

Case 3. Suppose a < inf S ′ ∈ S ′. Then [a, inf S ′) ⊆ S, so (RI3) gives inf S ′ ∈ S, a
contradiction.

The opposite direction, (ii) ⇒ (i), is immediate. �

A little history Theorem 1 was first published by Hathaway [12]. I came up with it
independently in 2010 [6] as a variation of Kalantari’s induction over the continuum
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[13, Section 3]. I was scheduled to give a seminar in my department that afternoon
on a different topic, but instead I spoke on real induction. The audience shared my
enthusiasm, which encouraged me to further develop and disseminate the material.

The enunciation of an inductive principle for subintervals of R is far from new.
The earliest instance I know of is a 1923 work of Khinchin [15]. There is an earlier
borderline case: a 1919 work of Chao [4] gives an inductive criterion for a subset of
[a, ∞) to be all of [a, ∞). However, Chao’s criterion involves a “discrete increment”
� > 0 and in fact can be proved by conventional mathematical induction.

In addition to the works [4, 12, 13, 15], each of the following papers introduces
some form of continuous induction, in many cases without reference to past precedent:
[2, 8–10, 16, 18, 19, 23, 25, 26].

Often for a mathematical principle, implicit use predates explicit formulation. The
first explicit use of mathematical induction was in Pascal’s 1665 Traité du triangle
arithmétique, but most agree that Euclid’s celebrated Proposition IX.20—There are
infinitely many primes—of circa 300 BCE contains the crucial implicit use of an induc-
tive principle. (Strictly speaking, Euclid assumes there are three primes and produces
a fourth. Evidently some more general principle is intended.) Later we will encounter
an important implicit use of real induction that predates the work of Khinchin and even
of Chao.

Applications in analysis Let us see real induction in action.

Theorem 2 (Intermediate value theorem). Let f : [a, b] → R be a continuous func-
tion, and let L ∈ R be in between f (a) and f (b). Then there is c ∈ [a, b] such that
f (c) = L.

Proof. Replacing f by ±(f − c), we reduce to the following special case: if f :
[a, b] → R \ {0} is continuous and f (a) > 0, then f (b) > 0. Let S = {x ∈
[a, b] | f (x) > 0}, so f (b) > 0 if and only if b ∈ S. We will use real induction
to show that S = [a, b]. Thus f (b) > 0, completing the proof.

(RI1) Since f (a) > 0, we have a ∈ S.
(RI2) Let x ∈ S, x < b, so f (x) > 0. Since f is continuous at x, there exists δ > 0

such that f is positive on [x, x + δ], and thus [x, x + δ] ⊆ S.
(RI3) Let x ∈ (a, b] be such that [a, x) ⊆ S, i.e., f is positive on [a, x). We claim

that f (x) > 0. Indeed, since f (x) �= 0, the only other possibility is f (x) < 0, but if
so, then by continuity there would exist δ > 0 such that f is negative on [x − δ, x],
i.e., f is both positive and negative at each point of [x − δ, x], a contradiction. �

Theorem 3. A continuous function f : [a, b] → R is bounded.

Proof. Let S = {x ∈ [a, b] | f : [a, x] → R is bounded}. We will use real induction
to show that S = [a, b].

(RI1): Evidently a ∈ S.
(RI2): Suppose x ∈ S, so that f is bounded on [a, x]. But then f is continuous at x,

so is bounded near x: for instance, there exists δ > 0 such that for all y ∈ [x − δ, x +
δ], |f (y)| ≤ |f (x)| + 1. So f is bounded on [a, x] and also on [x, x + δ] and thus on
[a, x + δ].

(RI3): Suppose x ∈ (a, b] and [a, x) ⊆ S. Since f is continuous at x, there exists
0 < δ < x − a such that f is bounded on [x − δ, x]. Since a < x − δ < x, f is
bounded on [a, x − δ], so f is bounded on [a, x]. �

When using real induction, one must beware the following pitfall. Often we have a
family of statements P(I) indexed by subintervals I of [a, b]. In the proof of Theorem
3, P(I) is: f is bounded on I . In the proof of Theorem 2, P(I) is: f is positive
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at all points of I . It can be tempting to construe (RI3) as: for all a < x ≤ b, assume
P([a, x)) holds and prove P([a, x]). But this is not correct: we must assume P([a, y])
holds for all a ≤ y < x and prove P([a, x]). Sometimes the distinction is immaterial:
a function positive on [a, y] for all a ≤ y < x is positive on [a, x). But sometimes it
matters: a function bounded on [a, y] for all a ≤ y < x need not be bounded on [a, x).

Here is an instance in which finding the right inductive hypothesis requires insight.

Theorem 4 (Integrability theorem). Let f : [a, b] → R be continuous. Then f is
Darboux integrable: for all ε > 0, there is a partition P = {a = x0 < x1 < · · · <

xn−1 < xn = b} of [a, b] such that the difference between the associated upper sum

U(f,P) =
n−1∑
i=0

sup(f, [xi, xi+1])(xi+1 − xi)

and the associated lower sum

L(f,P) =
n−1∑
i=0

inf(f, [xi, xi+1])(xi+1 − xi)

is less than ε.

Proof. For ε > 0, let S(ε) = {x ∈ [a, b] | there exists a partition Px of [a, x] where
U(f,Px) − L(f,Px) < (x − a)ε}. We will use real induction to show that for all
ε > 0, we have S(ε) = [a, b]. Then b ∈ S( ε

b−a
), completing the proof.

(RI1) As usual, this is clear.
(RI2) Suppose that for x ∈ [a, b) we have [a, x] ⊆ S(ε), so that there is a partition

Px of [a, x] such that U(f,Px) − L(f,Px) < (x − a)ε. Since f is continuous at
x, there is δ > 0 such that sup(f, [x, x + δ]) − inf(f, [x, x + δ]) < ε. Now let y ∈
[x, x + δ] and take the partition Py = Px ∪ {y} of [a, y]. Then

U(f,Py) − L(f,Py)

= (U(f,Px) + (y − x) sup(f, [a, y])) − (L(f,Px) + (y − x) inf(f, [a, y]))

< (x − a)(ε) + (y − x)(ε) = (y − a)(ε).

(RI3) Suppose that for x ∈ (a, b] we have [a, x) ⊆ S(ε). Since f is continuous
at x, there is δ > 0 such that sup(f, [x − δ, x]) − inf(f, [x − δ, x]) < ε. Since x −
δ < x, x − δ ∈ S(ε), there is a partition Px−δ of [a, x − δ] such that U(f,Px−δ) =
L(f,Px−δ) = (x − δ − a)ε. Let Px = Px−δ ∪ {x}. Then as above we get

U(f,Px) − L(f,Px) < (x − δ − a)ε + δε = (x − a)ε. �

Applications in topology

Theorem 5 (Bolzano–Weierstrass). Each infinite subset A of [a, b] has a limit point:
there is L ∈ [a, b] such that for all δ > 0, the set (L − δ, L + δ) ∩ A is infinite.

Proof. Let S be the set of x in [a, b] such that if A ∩ [a, x] is infinite, it has a limit
point. It suffices to show S = [a, b], which we will do by real induction.

(RI1) is clear.
(RI2) Suppose x ∈ [a, b) ∩ S. If A ∩ [a, x] is infinite, then it has a limit point and

hence so does A ∩ [a, b]: thus S = [a, b]. If for some δ > 0, A ∩ [a, x + δ] is finite,
then [x, x + δ] ⊆ S. Otherwise A ∩ [a, x] is finite but A ∩ [a, x + δ] is infinite for all
δ > 0, and then x is a limit point for A and S = [a, b] as above.
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(RI3) If [a, x) ⊆ S, then either A ∩ [a, y] is infinite for some y < x, so x ∈ S; or
A ∩ [a, x] is finite, so x ∈ S; or A ∩ [a, y] is finite for all y < x and A ∩ [a, x] is
infinite, so x is a limit point of A ∩ [a, x] and x ∈ S. �

Recall that a subset U of [a, b] is open if for all x ∈ U , there is δ > 0 such that
⎧⎪⎨
⎪⎩

(x − δ, x + δ) ⊂ U x /∈ {a, b}
[a, x + δ) ⊂ U x = a

(x − δ, b] ⊂ U x = b

.

A subset is closed if its complement is open.

Theorem 6. The interval [a, b] is connected: if U and V are disjoint open subsets of
[a, b] such that U ∪ V = [a, b], then U = [a, b] or V = [a, b].

Proof. Suppose [a, b] = U ∪ V , with U and V open and U ∩ V = ∅. We assume
a ∈ U and prove by real induction that U = [a, b]: (RI1) is immediate, (RI2) holds
because U is open, and (RI3) holds because U is closed. We’re done! �

Theorem 7 (Heine–Borel). The interval [a, b] is compact: if {Ui}i∈I is a family of
open subsets of [a, b] such that

⋃
i∈I Ui = [a, b], then there is a finite subset J ⊂ I

such that
⋃

i∈J Ui = [a, b].

Proof. For an open covering U = {Ui}i∈I of [a, b], let

S = {x ∈ [a, b] | U ∩ [a, x] has a finite subcovering}.
We prove S = [a, b] by real induction. (RI1) is clear. (RI2): If U1, . . . , Un covers
[a, x], then some Ui contains [x, x + δ] for some δ > 0. (RI3): If [a, x) ⊆ S, then
x ∈ Ui for some i ∈ I ; let y < x be such that (y, x] ∈ Ui . There is a finite J ⊆ I with⋃

i∈J Ui ⊃ [a, y], so {Ui}i∈J ∪ Ui covers [a, x]. We’re done! �

Some real induction proofs for the reader Here are more results amenable to real
induction. The proofs are left to you.

Theorem 8 (Mean value inequality). Let f : [a, b] → R be differentiable. Suppose
that there exists M ∈ R such that for all x ∈ [a, b] we have f ′(x) ≥ M . Then for all
x < y ∈ R, we have f (y) − f (x) ≥ M(y − x).

Theorem 9 (Uniform continuity theorem). Let f : [a, b] → R be continuous. Then f

is uniformly continuous on [a, b].

Theorem 10 (Cantor intersection theorem). Let {Fn}∞
n=1 be a decreasing sequence of

closed subsets of [a, b]. Put F = ⋂
n Fn. Then either F �= ∅ or there exists n ∈ Z+

such that Fn = ∅.

Theorem 11 (Lebesgue number lemma). If {Ui}i∈I is an open covering of [a, b], then
there is δ > 0 such that if A ⊆ [a, b] has diameter at most δ, then A ⊆ Ui for some
i ∈ I .

Theorem 12 (Dini’s lemma). Let {fn}∞
n=1 be a sequence of continuous real-valued

functions on the interval [a, b] that is pointwise decreasing: for all x ∈ [a, b] and all
n ∈ Z+, fn+1(x) ≤ fn(x). If f : [a, b] → R is continuous and fn → f pointwise,
then fn → f uniformly.
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Theorem 13 (Arzelà–Ascoli). Let {fn}∞
n=1 be a sequence of continuous functions on

[a, b] such that:
(i) There is M ∈ R such that for all n ∈ Z+ and all x ∈ [a, b], |fn(x)| ≤ M , and
(ii) For all x ∈ [a, b] and all ε > 0, there exists δ > 0 such that if |x − y| < δ, then
for all n ∈ Z+, |fn(x) − fn(y)| < ε.
Then there is a subsequence {fnk

} that is uniformly convergent on [a, b].

Theorem 8 is a consequence of the mean value theorem. It is one of several results
that have been advocated (by some; we will not weigh in on this issue) as being peda-
gogically preferable to the mean value theorem. The other variants can also be proved
by real induction. But what about the mean value theorem itself?

Problem 1. The standard proof of the mean value theorem is a deduction from the
extreme value theorem. Either prove the mean value theorem directly by real induction
or explain why it is not possible to do so.

Problem 2. Find other theorems that can be proved via real induction.

Comments and complements Our proof of Theorem 2 is not so different from the
usual proof using suprema. That proof is probably even cleaner: it suffices to assume
that f (a) > 0 and f (b) < 0 and show that there is c ∈ (a, b) with f (c) = 0. For
this, let c = sup {x ∈ [a, b] | f (x) ≤ 0}. Then—as follows from the definition of
continuity—we must have f (c) = 0.

But this proof has within it a germ of the idea for real induction. In fact, one can
motivate real induction in a classroom setting by asking for a proof of Theorem 3
along the lines of the above proof of Theorem 2: i.e., we start by defining c = sup {x ∈
[a, b] | f is bounded on [a, x]}. Then it emerges naturally that we want to show that
c = b and that we can establish this by showing (RI2) and (RI3). (Here, as in every
application I know of, (RI1) is obvious.) It is then an interesting exercise to see how to
modify the standard proof of Theorem 2 to get the proof by real induction.

We have used real induction to prove the interval theorems of elementary real analy-
sis (cf. [28, Chapter 7]) with one exception: we are missing the extreme value theorem,
which asserts that every continuous f : [a, b] → R assumes its maximum and mini-
mum values. This result may be deduced from Theorem 3 by an easy argument using
suprema: by Theorem 3, M = sup(f, [a, b]) is finite. If M were not attained on the
interval [a, b], then the function g : x �→ 1

M−f (x)
would be continuous and unbounded

on [a, b], contradicting Theorem 3. To reiterate: we do not advocate using real induc-
tion in place of Dedekind’s completeness axiom but rather—when helpful!—as a
proof technique.

Theorem 4 is usually proved using the uniform continuity of continuous functions
f : [a, b] → R. In [28, pp. 292–293], Spivak gives a different proof, establishing
equality of the upper and lower integrals by differentiation. This method goes back
at least to M.J. Norris [22]. Our proof seems different from both of these.

Standard proofs of Theorem 5 use monotone subsequences, dissection/nested inter-
vals or the compactness of [a, b]. Our proof appears to be new.

Perhaps the best argument for real induction in the classroom is the proofs it affords
for Theorems 6 and 7: not only are they short and simple, but initiates in real induction
will find them easily.

On the one hand this suggests that the concepts of connectedness and compactness
may be inherently inductive in some sense. There seems to be something to this: see,
e.g., induction on connectedness and induction on compactness in [31]. We will give
a different kind of generalization in the next section when we explore connectedness
and compactness in order topologies.
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On the other hand, it raises the question of why this proof technique—which, recall,
has appeared in many variations in more than a dozen prior works—is not more pop-
ular. The situation becomes even more curious once one learns that our proof of
Theorem 7 is essentially the same as one given in 1904 by Henri Lebesgue. In [17],
Lebesgue proves the result as follows: he says that x ∈ [a, b] is “reached” if there is a
finite subcovering of the interval [a, x], and proceeds by considering the supremum of
the set of all points x that are reached. This is the last of the early proofs of Theorem
7 surveyed in [1]; they also discuss proofs by Borel, Cousin, Schoenflies, and Young.
The authors are quite enthusiastic about Lebesgue’s proof, writing “This is the one!
The proof is thoroughly modern and simple to follow. In comparison, all previous
arguments are cumbersome and overly complicated.”

Of course Theorem 2 and the extreme value theorem are quick consequences of
Theorems 6 and 7, via the following basic result.

Proposition 1. Let f : X → Y be a continuous surjection of topological spaces.
(a) [20, Theorem 23.5] If X is connected, then so is Y .
(b) [20, Theorem 26.5] If X is compact, then so is Y .

Ordered induction

In this section we pursue induction in ordered sets, obtaining a common generalization
of mathematical induction and real induction.

Ordered sets An ordered set (sometimes called a linearly ordered or totally ordered
set) is a set X endowed with a binary relation ≤ that satisfies:

• reflexivity: for all x ∈ X, x ≤ x;
• anti-symmetry: for all x, y ∈ X, if x ≤ y and y ≤ x, then x = y;
• transitivity: for all x, y, z ∈ X, if x ≤ y and y ≤ z, then x ≤ z; and
• totality: for all x, y ∈ X, at least one of x ≤ y and y ≤ x holds.

Our distinguished example is the interval [a, b] ⊆ R.
A top element (resp. a bottom element) of an ordered set (X, ≤) is an element �

(resp. ⊥) such that x ≤ � (resp. ⊥ ≤ x) for all x ∈ X. Clearly X can have at most one
top (resp. bottom) element. If X lacks a top element, then we can simply adjoin such
an element, denoted �—that is, � is not an element of X and decreed to satisfy x < �
for all x ∈ X. Similarly, if X lacks a bottom element we can adjoin one, denoted ⊥.
We denote by X̃ the set X extended by a top element if it lacks one and extended by a
bottom element if it lacks one. Applying this construction to the real numbers, we get
the extended real numbers, in which every subset has a supremum and an infimum.

If X and Y are ordered sets, a map f : X → Y is isotone (also called order-
preserving), increasing or monotone, though the latter is used in analysis also for
antitone (order-reversing) maps if for all x1 ≤ x2 in X, we have f (x1) ≤ f (x2) in
Y . A map f : X → Y is an order-isomorphism if it is isotone and admits an isotone
inverse g : Y → X. (An isotone bijection is an order-isomorphism, but defining an
isomorphism as a bijective morphism is certainly wrong in other contexts, e.g., for
topological spaces or partially ordered sets.)

Next we define intervals in an ordered set. The empty set is decreed to be an open
interval in X. A closed, bounded interval in X is either the empty set or a subset of
the form [a, b] = {x ∈ X | a ≤ x ≤ b} for elements a ≤ b in X. A nonempty sub-
set I ⊆ X is an interval if inf I and sup I both exist in X̃ and I ∪ {inf I, sup I } is a
closed, bounded interval in X̃. A nonempty interval I is open if the following hold:
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(i) if inf I ∈ I then inf I is the bottom element of X and (ii) if sup I ∈ I then sup I is
the top element of X. For x ∈ X, we explicitly define the following intervals:

<x = {y ∈ X | y < x}, >x = {y ∈ X | y > x},
≤x = {y ∈ X | y ≤ x}, ≥x = {y ∈ X | y ≥ x}.

The open intervals form a base for a topology on X, called the order topology. The
bounded open intervals—those of the form (a, b) for elements a < b of X, [⊥, b)

for b ∈ X if X has a bottom element, (a, �] for a ∈ X if X has a top element and
X = [⊥, �] if X has both top and bottom elements—are a base for the same topology.
If X = R this is the usual Euclidean topology.

In some ways, order topologies are closer relatives to R than an arbitrary met-
ric space, while in other ways they are more exotic. For example, they need not be
metrizable or even first countable. Order topologies are always Hausdorff, so a com-
pact subset must be closed. Moreover a compact subset C must be bounded—that is,
contained in a closed, bounded interval: for each x ∈ C, let Ix be a bounded open
interval containing x. Then there is a finite subset Y ⊆ X such that C ⊆ ⋃

x∈Y Ix and
C ⊆ [minx∈Y inf Ix, maxx∈Y sup Ix].

An ordered set is Dedekind complete if every nonempty subset that is bounded
above has a supremum. This holds if and only if every nonempty subset that is bounded
below has an infimum. An ordered set is complete if every subset has a supremum (if
and only if every subset has an infimum).

Proposition 2. Let X be an ordered set. Then,
(a) X is Dedekind complete if and only if X̃ is complete.
(b) X is complete if and only if it is Dedekind complete and has top and bottom ele-
ments.

Proof. We observe that inf∅ exists if and only if X has a top element—in which case
inf∅ = �—and sup∅ exists if and only if X has a bottom element—in which case
inf∅ = ⊥. The rest is straightforward and left to the reader. �

Ordered induction A subset S of an ordered set (X, ≤) is inductive if it satisfies all
of the following:

(IS1) There is a ∈ X such that ≤a ⊆ S.
(IS2) For all x ∈ S, either x = � or there is y > x such that [x, y] ⊆ S.
(IS3) For all x ∈ X, if <x ⊆ S, then x ∈ S.

Theorem 14 (Principle of ordered induction). For a nonempty ordered set X, the
following are equivalent:
(i) X is Dedekind complete.
(ii) The only inductive subset of X is X itself.

Proof. (i) ⇒ (ii). Let S ⊆ X be inductive. Seeking a contradiction, we suppose S ′ =
X \ S is nonempty. Fix a ∈ X satisfying (IS1). Then a is a lower bound for S ′, so by
hypothesis S ′ has an infimum, say y. Any element less than y is strictly less than every
element of S ′, so <y ⊂ S. By (IS3), y ∈ S. If y = �, then S ′ = {�} or S ′ = ∅: both are
contradictions. So y < �, and then by (IS2) there exists z > y such that [y, z] ⊆ S and
thus ≤z ⊆ S. Thus z is a lower bound for S ′ that is strictly larger than y, a contradiction.

(ii) ⇒ (i). Let T ⊆ X be nonempty and bounded below by a. Let S be the set of
lower bounds for T . Then ≤a ⊆ S, so S satisfies (IS1).
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Case 1. Suppose S does not satisfy (IS2): there is x ∈ S with no y ∈ X such that
[x, y] ⊆ S. Since S is downward closed, x is the top element of S and x = inf T .

Case 2. Suppose S does not satisfy (IS3): there is x ∈ X such that <x ∈ S but x �∈ S,
i.e., there exists t ∈ T such that t < x. Then also t ∈ S, so t is the least element of T :
in particular t = inf T .

Case 3. If S satisfies (IS2) and (IS3), then S = X, T = {�} and inf T = �. �

Transfinite induction An ordered set X is well-ordered if every nonempty subset
has a bottom element. If X is well-ordered and ∅ � Y ⊂ X is bounded above, then
(as usual) if Y has a top element �Y then sup Y = �Y ; otherwise there is an element
x ∈ X such that x > y for all y ∈ Y and thus, by well ordering, a least such element,
which is sup Y . That is, well-ordered subsets are Dedekind complete, and thus, in view
of Theorem 14, the only inductive subset of a well-ordered set X is X itself.

Let x < y be elements of an ordered set X. If [x, y] = {x, y} then we say that y is
the successor of x and that x is the predecessor of y. If X is a nonempty well-ordered
set, then every y �= � has a successor. Clearly ⊥ has no predecessor. The natural
numbers form an infinite well-ordered set in which every x �= ⊥ has a predecessor,
and this characterizes N0 up to order-isomorphism.

In a well-ordered set, (IS2) is equivalent to

(IS2′) For all every x ∈ S, either x = � or the successor of x also lies in S.

Thus we recover the following important result.

Theorem 15 (Principle of transfinite induction). Let X be a nonempty well-ordered
set. Let S be a subset of X such that:
(T1) We have ⊥ ∈ S.
(T2) If x ∈ X, either x = � or the successor of x also lies in S.
(T3) For all y ∈ X, if <y ⊆ S, then y ∈ S.
Then S = X.

This statement is in fact rather redundant: applying (T3) with y = ⊥ we get (T1);
applying (T3) with y the successor of a non-top element x, we get (T2). The redun-
dancy could be eliminated by requiring (T3) only for non-bottom elements that have
no predecessors. But it is harmless, and moreover it is often natural to treat the three
cases separately. (For instance, the three cases correspond to the three types of ordinal
numbers.) As mentioned above, in N0 there is no non-bottom element without a pre-
decessor, and thus applied therein Theorem 15 becomes the principle of mathematical
induction.

Transfinite induction does not seem to have the ubiquitous presence in mathematics
students’ toolkits that it once did. If true, that is both unfortunate and beyond the scope
of this article to remedy. However, we can recommend [14] which gives this topic the
elegant presentation, context and range of applications that it deserves.

Completeness of subsets Let X be a Dedekind complete ordered set, and let ∅ �=
Y ⊆ X. Then Y is an ordered set in its own right—when is it Dedekind complete? The
analogy with metric spaces (and Cauchy completeness: that is, in which every Cauchy
sequence converges) suggests that this holds if and only if Y is closed, but a little
thought shows that this cannot be quite right. For example, the arctangent function
gives an order isomorphism from R to (−π

2 , π

2 ), so (−π

2 , π

2 ) is Dedekind complete but
not closed in R. The precise answer is as follows: as usual, let X̃ be X augmented
with a bottom element and/or a top element if and only if X lacks them. Then X̃

is complete by Proposition 2, so inf Y and sup Y exist in X̃. This allows us to view
Ỹ = Y ∪ {inf Y, sup Y } as a subset of the complete ordered set X̃.
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Proposition 3. Let Y be a subset of a Dedekind complete ordered set (X, ≤) Then Y

is Dedekind complete if and only if Ỹ is closed in X̃. It follows that every interval in a
Dedekind complete ordered set is Dedekind complete.

Proof. Suppose that Y is a Dedekind complete subset of the ordered set X, and let
x ∈ X̃ be a point such that every neighborhood U of x in X̃ meets Y . Seeking a
contradiction, we suppose that x /∈ Ỹ . Then at least one of the following holds: (i)
for all elements x ′ < x of X, we have (x ′, x) ∩ Y �= ∅, in which case x = sup{y ∈
Y | y ≤ x} ∈ Ỹ , or (ii) for all elements x ′′ > x of X we have (x, x ′′) ∩ Y �= ∅, in
which case x = inf{y ∈ Y | x ≤ y} ∈ Ỹ . This contradiction shows that Ỹ is closed
in X̃.

Now suppose that X is Dedekind complete and that Y ⊂ X is such that Ỹ is closed
in X̃. Let A be a nonempty subset of Y that is bounded above by M ∈ Y , and let
a ∈ A. Since X is Dedekind complete, sup A exists in X, and clearly sup A ∈ [a, M].
Since A ⊂ Y , every open interval in X centered at sup A contains points of Y , so
sup A ∈ Ỹ ∩ [a, M] ⊂ Y , and Y is Dedekind complete.

The empty interval is Dedekind complete, and for every nonempty interval I ⊆ X,
the set Ĩ is a closed interval in X̃, so I is Dedekind complete. �

Ordered fields An ordered field F is a field that is endowed with an ordering ≤ that
satisfies the following compatibilities:

for all x, y, z ∈ F, x ≤ y implies x + z ≤ y + z and

for all x, y ∈ F, x ≥ 0, y ≥ 0 implies xy ≥ 0.

The real numbers R form an ordered field. Every subfield of an ordered field is again
an ordered field, so one gets many examples by taking subfields of R. The standard
orderings on R and Q are in fact the unique orderings on these fields [5, Section 15.2].
Every ordered field has characteristic 0, so admits Q as an ordered subfield [5, loc.
cit.].

Here is another example. Let R(t) be the field of rational functions p(t)

q(t)
, that is, p(t)

and q(t) are real polynomial functions and q(t) is not identically zero. If r, s ∈ R(t)

are distinct rational functions, then either r(x) > s(x) for all sufficiently large x, which
we denote r > s, or r(x) < s(x) for all sufficiently large x, which we denote r < s.
This makes R(t) into an ordered field. An element x of an ordered field is called
infinitely large if x > n for all n ∈ Z+. In the field R(t), the element t is infinitely
large.

An ordered field that admits an infinitely large element is called non-Archimedean.
The subfields of R are Archimedean, and conversely every Archimedean ordered field
admits a unique isotone field embedding into R and thus may be identified with a
subfield of R [5, Corollary 15.48]. If F is a proper subfield of R, then F contains Q so
is dense in R. It follows that F̃ is not closed in the extended real numbers R̃, so F is
not Dedekind complete by Proposition 3. On the other hand, if F is non-Archimedean,
then the upper bounds for N0 are precisely the infinitely large elements, which exist by
definition, but if x is infinitely large then so is x − 1, so N0 has no supremum in F . We
conclude that any Dedekind complete ordered field is isomorphic to R [5, Theorem
15.56].

Ordered induction is also a characteristic property of R among ordered fields, as the
following corollary indicates.

Corollary 1. In an ordered field (F, +, ·, ≤), the following are equivalent:
(i) F is Dedekind complete (and thus isomorphic to R).
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(ii) For all a < b in F , the interval [a, b] is complete.
(ii′) For all a < b in F , the only inductive subset of [a, b] is [a, b].
(iii) There are a < b in F such that the interval [a, b] is complete.
(iii′) There are a < b in F such that the only inductive subset of [a, b] is [a, b].

Proof. (i) ⇒ (ii) by Proposition 3.
(ii) ⇔ (ii′) and (iii) ⇔ (iii′) by Theorem 14.
(ii) ⇒ (iii) is clear.
(iii) ⇒ (i). Suppose [a, b] is complete. Let S ⊂ F be any subset that is nonempty

and bounded above, say by B. Let A ∈ S. Then S has a supremum in F if and only if
T = {x ∈ S | A ≤ x} ⊆ [A, B] does. The map

� : [a, b] → [A, B], x �→ B − A

b − a
(x − a) + A

is an order-isomorphism, so [A, B] is complete and T has a supremum in F . �

Problem 3. Characterize the inductive subsets of [a, b] ∩ Q.

Completeness and connectedness A subset Y of an ordered set (X, ≤) is convex
if for all x, z, y ∈ X with x < z < y, if x, y ∈ Y then also z ∈ Y . In any ordered set
(X, ≤), both intervals and connected sets are convex. The former is clear; as for the
latter, if Y ⊆ X is not convex, there are x < z < y ∈ X with x, y ∈ Y and z /∈ Y , and
then Y1 = <z ∩ Y, Y2 = >z ∩ Y is a separation of Y . The converse implications depend
on completeness, as indicated in the following proposition.

Proposition 4. In an ordered set (X, ≤), the following are equivalent:
(i) X is Dedekind complete.
(ii) Every convex subset Y ⊆ X is an interval.

Proof. (i) ⇒ (ii). We may assume that Y is nonempty. Consider Ỹ ⊆ X̃. We have
Ỹ ⊆ [inf Y, sup Y ]. Conversely, if inf Y < z < sup Y then there are x, y ∈ Y with x <

z < y, so z ∈ Y . Thus Ỹ = [inf Y, sup Y ], so Y is an interval.
(ii) ⇒ (i). We proceed by contraposition. Suppose X is not Dedekind complete, and

let Y ⊆ X be nonempty, bounded above and without a supremum in X. Let

D(Y) = {x ∈ X | x ≤ y for some y ∈ Y }.
Then D(Y) is convex, bounded above and has no supremum, so not an interval. �

The next question is when intervals are connected. For this, even completeness is
not sufficient. For example, a finite ordered set with more than one element is complete
but not connected: the order topology is discrete. The extra condition we need is as
follows: an ordered set (X, ≤) is densely ordered if for all x < y in X there is z ∈
(x, y). A convex subset of a densely ordered set is again densely ordered.

Theorem 16. For an ordered set X, the following are equivalent:
(i) X is densely ordered and Dedekind complete.
(ii) X is connected in the order topology.

Proof. (i) ⇒ (ii). Step 1. We suppose ⊥ ∈ X. Since X is densely ordered, a sub-
set S ⊆ X which contains ⊥ and is both open and closed in the order topology is
inductive. Since X is Dedekind complete, by Theorem 14, S = X. This shows X is
connected.
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Step 2. We may assume X �= ∅ and choose a ∈ X. By Proposition 3, Step 1 applies
to show ≥a is connected. A similar downward induction argument shows ≤a is con-
nected. Since X =≤ a ∪ ≥a and ≤a ∩ ≥a �= ∅, X is connected.

(ii) ⇒ (i). We proceed by contraposition. First, if X is not densely ordered, there
are a < b in X with [a, b] = {a, b}, so A = ≤a, B = ≥b is a separation of X.

Next, suppose that X is densely ordered but there is a subset S ⊆ X that is
nonempty, bounded below by a and with no infimum. Let L be the set of lower
bounds for X. Since S has no infimum, for all � ∈ L there is �′ ∈ L with �′ > �, and
thus

� ∈ <�′ ⊂ L.

This shows that L is open. Now let x ∈ X \ L. Then x is not a lower bound for S, so
there is s ∈ S with s < x. Since X is densely ordered, there is y ∈ X with s < y < x,
and then

x ∈ >y ⊂ X \ L.

This shows that L is closed. Since a ∈ L and X is connected, we must have L =
X. Thus L ∩ S = S is nonempty, but any element of L ∩ S is an infimum for S, a
contradiction. �

Corollary 2. Let (X, ≤) be densely ordered and Dedekind complete. For a subset
Y ⊆ X, the following are equivalent:
(i) Y is connected in the order topology.
(ii) Y is convex.
(iii) Y is an interval.

Proof. (i) ⇒ (ii) was shown above for any order topology.
(ii) ⇒ (iii) by Proposition 4.
(iii) ⇒ (i): Being an interval, Y is a convex subset of a densely ordered set, so Y is

densely ordered. By Proposition 3, Y is Dedekind complete, so by Theorem 16, Y is
connected in the order topology. �

Above we saw that an ordered field F is Dedekind complete if and only if there
are a < b in F such that the interval [a, b] is complete. This has the following conse-
quence.

Corollary 3. Let (F, +, ·, <) be an ordered field. The following are equivalent:
(i) F is Dedekind complete (and thus isomorphic to R).
(ii) Every closed interval [a, b] of F is connected in the order topology.
(iiii) For some a < b in F , the interval [a, b] is connected in the order topology.

It follows that if I ⊆ R is an interval and f : I → R is continuous, then f (I) is
again an interval. If I is closed and bounded, then it is compact, so f (I) is again closed
and bounded. Conversely, it is a nice exercise to show that if I, J ⊆ R are intervals,
each consisting of more than one point, and J is closed and bounded if I is, then there
is a continuous function f : I → R with f (I) = J .

Completeness and compactness

Theorem 17. For an ordered set X, the following are equivalent:
(i) X is complete.
(ii) X is compact in the order topology.



148 MATHEMATICS MAGAZINE

Proof. (i) ⇒ (ii). Let U = {Ui}i∈I be an open covering of X. Let S be the set of
x ∈ X such that the covering U ∩ [⊥, x] of [⊥, x] admits a finite subcovering. We
have ⊥ ∈ S, so S satisfies (IS1). Suppose U1 ∩ [⊥, x], . . . , Un ∩ [⊥, x] covers [⊥, x].
If there exists y ∈ X such that [x, y] = {x, y}, then adding to the covering any element
Uy containing y gives a finite covering of [⊥, y]. Otherwise some Ui contains x and
hence also [x, y] for some y > x. So S satisfies (IS2). Now suppose that x �= ⊥ and
[⊥, x) ⊆ S. Let ix ∈ I be such that x ∈ Uix , and let y < x be such that (y, x] ⊆ Uix .
Since y ∈ S, there is a finite J ⊆ I with

⋃
i∈J Ui ⊃ [a, y], so

⋃
i∈J Ui ∪ Uix ⊃ [a, x].

Thus x ∈ S and S satisfies (IS3). Thus S is inductive; since X is Dedekind complete,
we have S = X. In particular � ∈ S, hence the covering has a finite subcovering.

(ii) ⇒ (i). For each x ∈ X there is a bounded open interval Ix containing x. If X

is compact, {Ix}x∈X has a finite subcovering, so X is bounded, i.e., has ⊥ and �. Let
S ⊆ X. Since inf∅ = �, we may assume S �= ∅. Let L be the set of lower bounds for
S. For each (b, s) ∈ L × S, consider the closed interval Cb,s := [b, s]. For any finite
subset {(b1, s1), . . . , (bn, sn)} of L × S, we have

N⋂
i=1

[bi, si] ⊃ [max bi, min si] �= ∅.

Since X is compact, there is y ∈ ⋂
L×S[b, s] and then y = inf S. �

Corollary 4 (Generalized Heine–Borel). (a) For an ordered set X, the following are
equivalent:
(i) X is Dedekind complete.
(ii) A subset S of X is compact in the order topology if and only if it is closed and
bounded.
(b) For an ordered field F , the following are equivalent:
(i) F is Dedekind complete (and thus isomorphic to R).
(ii) Every closed bounded interval [a, b] ⊆ F is compact.
(iii) For some a < b in F , the interval [a, b] is compact.

Proof. (a) (i) ⇒ (ii). A compact subset of any ordered space is closed and bounded.
Conversely, if X is Dedekind complete and S ⊆ X is closed and bounded, then by
Proposition 3, S is complete and then by Theorem 17, S is compact.

(ii) ⇒ (i). If S ⊆ X is nonempty and bounded above, let a ∈ S. Then S ′ = S ∩ ≥a

is bounded, so S ′ is compact and thus S ′ is complete by Theorem 17. The least upper
bound of S ′ is also the least upper bound of S.

(b) This follows immediately from part (a) and Corollary 1. �

Comments and complements The notion of Dedekind completeness goes back to
Dedekind’s construction of R using Dedekind cuts. In an ordered set X, a Dedekind
cut is a pair (L, R) of subsets of X such that R is the set of upper bounds for L and
L is the set of lower bounds for R. Then L ∪ R = X. Indeed, let x ∈ X; if x /∈ R

then there is � ∈ L with x < �, and if x /∈ L then there is r ∈ R with r < x, but then
r < x < �, so r ∈ R is not an upper bound for L. Similarly, L ∩ R is either empty or
consists of a single point x = �L = ⊥R. In the latter case we say the cut is principal.

Example 1. If the ordered set X has a bottom element ⊥, then ({⊥}, X) is a principal
cut in X; otherwise (∅, X) is a nonprincipal cut in X. Similarly, if X has a top
element �, then (X, {�}) is a principal cut in X; otherwise (X,∅) is a nonprincipal
cut in X.
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Example 2. In Q,

L = {x ∈ Q | x <
√

2}, R = {x ∈ Q | √
2 < x}

is a nonprincipal cut. To define a similar cut in R we must place
√

2 in both L and R,
giving a principal cut. However (∅,R) and (R,∅) are nonprincipal cuts in R.

An ordered set X is complete (resp. Dedekind complete) if and only if every cut
(resp. every cut different from (∅, X) and (X,∅)) is principal. (We leave this for the
interested reader to prove—by the principle of ordered induction or otherwise!) Let
C(X) be the set of cuts in X. For (L1, R1), (L2, R2) in X, we put (L1, R1) ≤ (L2, R2)

if and only if L1 ⊆ L2. This makes C(X) into a complete ordered set. For x ∈ X, we
define

ι(x) = ({y ∈ X | y ≤ x}, {z ∈ X | x ≤ z}).

Then ι : X ↪→ C(X) is an isotone injection. Thus every ordered set can be canonically
embedded in a complete ordered set, which may expand the range of applicability of
the Principle of Ordered Induction.

Problem 4. Use the embedding ι : X ↪→ C(X) to give applications of the principle of
ordered induction to ordered sets X that are not Dedekind complete.

The principality of Dedekind cuts may not be the most initially appealing com-
pleteness axiom, but it can be an elegant proof technique. Propp puts it to good use in
[24].

Most of the above results can be found piecemeal in various places. The implication
(i) ⇒ (ii) in Theorem 17 is due to Frink [11]. This is probably the more interesting
direction. A different proof of (ii) ⇒ (i) goes by contraposition: if X is not complete,
then there is a nonprincipal Dedekind cut (L, R), which one can use to construct an
open cover without a finite subcover: cf. [29, p. 67]. The implication (i) ⇒ (ii) of
Theorem 16 is treated by Munkres [20, Theorem 24.1]. Similarly, [20, Theorem 27.1]
gives a portion of Corollary 4.

A subtlety arises when considering the topology on a subset Y of an ordered set
(X, ≤). On the one hand, restricting ≤ to Y makes Y an ordered set in its own right, and
thus it gets an order topology. On the other hand, we can endow Y with the topology
it inherits as a subspace of the order topology on X. In general the order topology is
coarser than the subspace topology, and they need not coincide. For example, consider
Y = {0} ∪ (1/2, 1] ⊆ R. Then {0} is open in the subspace topology on Y but not in
the order topology—with the order topology, Y is homeomorphic to [ 1

2 , 1]. Moreover
there is no ordering on Y that induces the subspace topology. Thus in the above results
we were careful to specify “in the order topology.”

For a convex subset Y ⊆ X the two topologies coincide. We give an example in
which the distinction matters. An ordered field F that is not Dedekind complete is
totally disconnected in the order topology. That is, if Y ⊆ F consists of more than a
single point, then Y is not connected in the subspace topology. However, if F ⊃ R—
e.g., F = R(t)—then the subset R is connected in the order topology.
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2066. Proposed by George Stoica, New Brunswick, Canada.

Is there a function f : R → R satisfying |f (x + y)| ≥ |f (x) + f (y)| for all x, y ∈ R,
with strict inequality for at least some x, y? How about a function satisfying the reverse
inequality |f (x + y)| ≤ |f (x) + f (y)| everywhere, strictly somewhere?

2067. Proposed by Elton Bojaxhiu, Eppstein am Taunus, Germany and Enkel Hysnelaj,
Sydney, Australia.

Chord XY of a circle C is not a diameter. Let P, Q be two different points strictly
inside XY such that Q lies between P and X. Chord MN is perpendicular to the
diameter of C through Q, where MP < NP . Prove that (MQ − PQ) · XY ≥ 2 ·
QX · PY , and characterize those cases in which equality holds.

2068. Proposed by Ovidiu Furdui and Alina Sı̂ntămariăn, Technical University of Cluj-
Napoca, Cluj-Napoca, Romania.

Prove that the series
∞∑

n=1

3 · 6 · · · (3n)

7 · 10 · · · (3n + 4)
· 1

3n + 7

converges, and find its sum.

2069. Proposed by Eugene Delacroix, Lycee Therese dAvila, France and Su Pernu
Mero, Valenciana GTO, Mexico.
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Three points are chosen uniformly and independently at random in the unit interval
[0, 1]. These points divide the interval into four segments of lengths a, b, c, and d. Find
the expected value and standard deviation of the random variable X = max(a, b, c, d).

2070. Proposed by Enrique Treviño, Lake Forest College, Lake Forest, IL.

Fix a prime p. For any integer n ≥ p, let Sn be the number of ways of coloring n points
using p distinct colors, each at least once. Characterize those n such that Sn is not a
multiple of p2.

Quickies

1089. Proposed by Richard Stephens, Columbus State University, Columbus, GA.

Is there a function f : R → R such that (i) f is discontinuous everywhere, and
(ii) f (f (x)) = −x for all x ∈ R?

1090. Proposed by Konstantinos Gaitanas, Volos, Greece.

Find all primes p > 2 such that the range of the sequence {an} in Zp (the ring of
integers modulo p) defined recursively by

• a0 = 1, and
• an+1 = 2an (mod p) for n ≥ 0,

is equal to Zp − {0}.

Solutions

2041. Proposed by Vadim Mitrofanov, Taras Shevchenko National University of Kyiv,
Kyiv, Ukraine.

Let ABCD be a quadrilateral that circumscribes a circle of radius r and is also
inscribed in a circle of radius R. Let s be the semiperimeter of ABCD. Prove the
inequality s2 ≤ 6R2 + 4r2.

Solution by Elton Bojaxhiu, Eppstein am Taunus, Germany and Enkel Hysnelaj, Syd-
ney, Australia.
Let a = AB, b = BC, c = CD and d = DA be the side lengths of ABCD and s =
(a + b + c + d)/2 its semiperimeter. Since ABCD is a circumscribed quadrilateral,
its area is K = rs, and we further have s = a + c = b + d. Since ABCD is cyclic,
the relations

K = √
(s − a)(s − b)(s − c)(s − d) (Brahmagupta’s formula), and

4KR = √
(ab + cd)(ac + bd)(ad + bc) (Parameshvara’s formula)
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also hold, hence

R2 = (ab + cd)(ac + bd)(ad + bc)

16(s − a)(s − b)(s − c)(s − d)
= (ab + cd)(ac + bd)(ad + bc)

16abcd
, (1)

r2 = K2

s2
= (s − a)(s − b)(s − c)(s − d)

s2
= abcd

s2
. (2)

By homogeneity, we may henceforth assume s = 1 without loss of generality. Let
x = ac and y = bd. Since a + c = b + d = s = 1, we have x, y ≤ 1/4. Now let
u = ac + bd = x + y ≤ 1/2 and v = √

abcd = √
xy. By the AM–GM inequality, we

have v ≤ u/2 ≤ 1/4, hence 3 − 8v ≥ 1, so (3 − 8v)2 ≥ 1, i.e., 0 ≤ 8v2 − 6v + 1 =
3(1 − v)2 − (2 − 5v2). Again since u/(2v) ≥ 1, it follows that

2 − 5v2 ≤ 3(1 − v)2 ≤ 3
( u

2v
− v

)2 ⇒ 1 ≤ 3u(u − 4v2)

8v2
+ 4v2. (3)

From a + c = 1 = b + d, we get

u − 4v2 = (ac · 1 + bd · 1) − 4abcd = ac(b + d)2 + bd(a + c)2 − 4abcd

= ab2c + acd2 + a2bd + bc2c = (ab + cd)(ad + bc).

Since s = 1, inequality (3) and equations (1), (2) give

s2 = 1 ≤ 6 · (ab + cd)(ac + bd)(ad + bc)

16abcd
+ 4abcd = 6R2 + 4r2.

Also solved by Michel Bataille, Robin Chapman (UK), Kyle Gatesman, Subhankar Gayen
(India), Omran Kouba (Syria), Elias Lampakis (Greece), Joel Schlosberg, Achilleas Sinefakopoulos
(Greece), Michael Vowe, and the proposer. There was 1 incomplete or incorrect solution.

2042. Proposed by Rick Mabry and Debbie Shepherd, Louisiana State University
Shreveport, Shreveport, LA.

Recursively define random variables X0, X1, . . . , Xn, . . . and Y0, Y1, . . . , Yn, . . . tak-
ing values in [0, 1] as follows:

• X0 = 0 and Y0 = 1 are constants;
• for n = 0, 1, 2, . . . , Xn+1 and Yn+1 are chosen uniformly and independently in the

closed interval with endpoints Xn, Yn.

Prove that, with probability 1, the limits X̃ = limn→∞ Xn and Ỹ = limn→∞ Yn both
exist and are equal, and find their common distribution.

Solution by Northwestern University Math Problem Solving Group, Evanston, IL.
We will prove:

1. The limits X̃ and Ỹ exist and are equal with probability 1.
2. The common distribution of X̃ and Ỹ has probability density g(t) = 6t (1 − t) on

[0, 1].
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1. Denote by �Xn, Yn� the closed interval with endpoints Xn, Yn, i.e., �Xn, Yn� =
[Xn, Yn] if Xn ≤ Yn, and �Xn, Yn� = [Yn, Xn] if Xn > Yn. Since Xn+1, Yn+1 are cho-
sen in �Xn, Yn�, we have �Xn+1, Yn+1� ⊆ �Xn, Yn� for every n ≥ 0, so {�Xn, Yn�}n≥0

is a sequence of nested intervals. By the nested interval theorem their intersection is
nonempty; it consists of a unique point (equal to a common limit of Xn and Yn) pre-
cisely if the interval lengths tend to zero. We prove next that this is the case with
probability 1.

Let Ln = |Yn − Xn| be the length of �Xn, Yn�, and let δ ∈ (0, 1). Since Xn+1, Yn+1

are independently and uniformly chosen in �Xn, Yn�, it is easy to verify that

P[Ln+1 ≥ δ | Ln] =
⎧⎨
⎩

(
1 − δ

Ln

)2

, δ ≤ Ln;
0, δ > Ln.

Since Ln ≤ 1, we have (1 − δ/Ln)
2 ≤ (1 − δ)2 whenever Ln ≥ δ. It follows by routine

induction that P[Ln ≥ δ] ≤ (1 − δ)2n for every n ≥ 0. Indeed, this assertion holds for
n = 0 since L0 = |Y0 − X0| = |1 − 0| = 1 ≥ δ occurs with probability 1 ≤ (1 − δ)0.
Assuming next that P[Ln ≥ δ] ≤ (1 − δ)2n for some n ≥ 0, we have

P[Ln+1 ≥ δ] = P[Ln ≥ δ] · P[Ln+1 ≥ δ | Ln ≥ δ] ≤ (1 − δ)2n(1 − δ/Ln)
2

≤ (1 − δ)2n(1 − δ)2 = (1 − δ)2(n+1),

completing the inductive proof. Since 0 < δ < 1, the upper bound (1 − δ)2n approaches
0 as n tends to infinity, so we see that the event limn→∞ Ln = 0 has probability 1. This
shows that (with probability 1) the sequence of nested intervals {�Xn, Yn�}n≥0 con-
verges to a single point, and the intervals’ endpoints Xn, Yn converge to that same limit
X̃ = Ỹ .

2. We show that the common distribution of X̃ and Ỹ has probability density
g(t) = 6t (1 − t) on [0, 1]. For each integer n ≥ 0 define a new random variable Zn in
�Xn, Yn� whose conditional probability density given the event {Xn = x, Yn = y} is

fZn|{Xn=x,Yn=y} = gx,y(t) = 1

|y − x| · g

(
t − x

y − x

)
= 6(t − x)(y − t)

|y − x|3 on �x, y�.

(We may take Zn = Xn when Xn = Yn, but this event has zero probability and
may as well be ignored.) Since Zn ∈ �Xn, Yn�, the limit Z̃ = limn→∞ Zn satisfies
Z̃ = X̃ = Ỹ with probability 1, and its distribution coincides with that of both X̃

and Ỹ .
In what follows, we write f (n) for fZn , and f

(n)

E for the conditional density fZn|E of
Zn given an event E . Next, we shall show by induction that for every n ≥ 0 the (uncon-
ditional) probability density of Zn on [0, 1] is f (n) = g. For n = 0 we have X0 = 0,
Y0 = 1 are constant, so f (0) = f

(0)

{X0=0,Y0=1} = g0,1 = g. Next, fix n ≥ 0 and assume that
the probability density of Zn on [0, 1] is f (n) = g. It is clear from the recursive nature
of the problem that the conditional distribution of Zn+1 given an arbitrary outcome
{X1 = x, Y1 = y} of X1, Y1 (for x, y ∈ [0, 1]) is exactly the distribution as that of Zn

given {X0 = x, Y0 = y}, i.e., the distribution that Zn would have provided that the
entire process were started setting the deterministic variables X0, Y0 to the initial val-
ues X0 = x, Y0 = y instead of X0 = 0, Y0 = 1. (This is true whether x ≤ y or y > x.)
The inductive hypothesis is thus subsumed in the assertion that f

(n+1)

{X1=x,Y1=y} = gx,y for
x, y ∈ [0, 1]. For fixed t ∈ [0, 1], the probability density function f (n+1) of Zn+1 is the
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expected value (average) of the probability density functions f
(n)

{X1=x,Y1=y} of Zn+1, so
we have

f (n+1)(t) =
∫ 1

0

∫ 1

0
f

(n+1)

{X1=x,Y1=y}(t) dy dx =
∫ 1

0

∫ 1

0
gx,y(t) dy dx

= 2
∫ t

0

∫ 1

t

gx,y(t) dy dx,

since the fact that gx,y = gy,x implies that the double integral over [0, 1]2 is twice the
integral over the triangle {0 ≤ x ≤ y ≤ 1}, and moreover in this region the integrand
is actually supported on the rectangle {0 ≤ x ≤ t} × {t ≤ y ≤ 1} because gx,y is sup-
ported on �x, y�. Routine computation now gives

f (n+1)(t) = 2
∫ t

0

∫ 1

t

6(t − x)(y − t)

(y − x)3
dy dx = 12

∫ t

0
(t − x) ·

∫ 1−x

t−x

z − (t − x)

z3
dz dx

= 12
∫ t

0
(t − x) ·

[
(t − x)

2z2
− 1

z

]z=1−x

z=t−x

dx = 6
∫ t

0

(
1 − t

1 − x

)2

dx

= 6

[
(1 − t)2

1 − x

]x=t

x=0

= 6t (1 − t) = g(t).

This completes the inductive step of the proof that fZn = f (n) = g on [0, 1] for every
integer n ≥ 0. Thus, the limit Z̃ = limn→∞ Zn and hence also X̃, Ỹ must have the same
distribution, with probability density g(t) = 6t (1 − t) on [0, 1].
Editor’s Note. Stephen Herschkorn remarked that the problem may be regarded as
one starting from uniformly distributed (i.e., Beta(1, 1)) variables Xn, Yn to produce
Beta(2, 2)-distributed variables X̃ = Ỹ . He also verified that for n = 1, 2, 3, 4, 5, if
Xn, Yn are Beta(n, n)-distributed in the analogous sequence of nested intervals, then
the corresponding limit limn→∞ Xn = limn→∞ Yn has distribution Beta(2n, 2n). This
observation suggests a more general underlying question.

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Robert Calcaterra,
Kyle Gatesman, Stephen J. Herschkorn, Omran Kouba (Syria), Yang Liu, Albert Natian, Kenneth
Schilling, Nicholas C. Singer, Mark Wildon (UK), and the proposer.

2043. Proposed by Greg Oman, University of Colorado, Colorado Springs and Adam
Salminen, University of Evansville, Evansville, IN.

Find all commutative rings R with unity such that:

(i) R contains some element x that is neither nilpotent nor a unit (i.e., xn �= 0 for all
n ≥ 1 and xy �= 1 for all y ∈ R), and

(ii) every proper nonzero ideal of R is maximal.

Solution by Tom Jager, Calvin College, Grand Rapids, MI.
We prove that such rings R are precisely direct sums F1 ⊕ F2 of two fields F1, F2.

First assume R is a direct sum F1 ⊕ F2 of fields. Units of R are elements (a, b) with
nonzero a ∈ F1, b ∈ F2. Clearly, the element x = (1, 0) of R is neither nilpotent nor
a unit. Let I be a nonzero proper ideal of R. If (a, b) is a nonzero element of I , then
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(a, b) is necessarily a non-unit since I is proper, so exactly one of a, b is nonzero. If
a �= 0 and b = 0 then I ⊇ R(a, 0) = F1 ⊕ 〈0〉. However, the ideal F1 ⊕ 〈0〉 is maxi-
mal in R since R/(F1 ⊕ 〈0〉) ∼= F2 is a field, so necessarily I = F1 ⊕ 〈0〉 in this case.
If a = 0 and b �= 0 we conclude I = 〈0〉 ⊕ F2 similarly.

Conversely, assume that R satisfies the conditions of the problem. Let x be a non-
unit, non-nilpotent element of R. Clearly, so is x2. Thus, the ideals 〈x〉 and

〈
x2

〉
are

both proper and nonzero, hence maximal by hypothesis; however, 〈x〉 includes
〈
x2

〉
,

so we must have 〈x〉 = 〈
x2

〉
by maximality. In particular, x ∈ 〈

x2
〉 = Rx2 implies that

x = ax2 for some a ∈ R. It follows that x(1 − ax) = 0. Letting y = 1 − ax we have
xy = 0; in addition, y is not a unit since x �= 0. Furthermore, ax ∈ 〈x〉 but 1 /∈ 〈x〉,
so y /∈ 〈x〉. Thus, 〈y〉 is nonzero proper ideal of R, hence maximal by hypothesis.
Elements of the intersection 〈x〉 ∩ 〈y〉 are of the form z = ux = vy for some u, v ∈ R;
thus, z = ux = u(ax2) = ax(ux) = ax(vy) = av(xy) = 0. Hence, 〈x〉 ∩ 〈y〉 = 〈0〉,
and we further have 1 = ax + y ∈ 〈x〉 + 〈y〉, so 〈x〉 + 〈y〉 = R. The elements e1 = ax

and e2 = y satisfy e1e2 = 0, e1 + e2 = 1, and also e1x = axx = ax2 = x and e2y =
(1 − ax)y = y − axy = y − ax(1 − ax) = y − ax + a2x2 = y − ax + ax = y = e2.
Thus, F1 = 〈e1〉 and F2 = 〈e2〉 are rings, with unities e1 and e2, respectively, such that
R = F1 + F2 and F1 ∩ F2 = 〈0〉. If I is any ideal of F1 and r ∈ R is arbitrary, we
have r = ce1 + de2 for some c, d ∈ R (since F1 + F2 = R), hence for all z ∈ I we
have rz = ce1z + de2z = cz ∈ I , since e1z = z (as z ∈ F1) and e2z = 0 (as e2z ∈
F2 ∩ F1 = 〈0〉). It follows that a nonzero ideal I of F1 is actually a (necessarily proper)
nonzero ideal of R, thus maximal in R by hypothesis, and therefore I = F1 since I

and F1 are both maximal in R. This shows that F1 is a field, and analogously so is F2.
We have already shown that R is their direct sum, concluding the proof.

Also solved by Paul Budney, Robert Calcaterra, Souvik Dey, Joseph DiMuro, Abhay Goel,
Missouri State University Problem Solving Group, Greg Oman & Adam Salminen, Francisco
Perdomo and Ángel Plaza (Spain), Michael Reid, John H. Smith, Mark Wildon (UK), and the
proposer.

2044. Proposed by George Stoica, Saint John, New Brunswick, Canada.

Find all continuous functions f : [0, 1] → [0, ∞) such that

lim
x→0+ e1/xf (x) = 0 and f (x) ≤

∫ x

0

f (t)

t2
dt for all x ∈ [0, 1].

Solution by Eugene A. Herman, Grinnell College, Grinnell, IA.
We prove that the only function satisfying the given conditions is the zero function
on [0, 1]. For all x ≥ 1, let

g(x) = f

(
1

x

)
, and G(x) =

∫ ∞

x

g(t) dt.

Then the inequality

−G′(x) = g(x) = f

(
1

x

)
≤

∫ 1/x

0

f (t)

t2
dt =

∫ ∞

x

f

(
1

u

)
du = G(x)

also holds for all x ≥ 1, and so

d

dx
(exG(x)) = ex(G(x) + G′(x)) ≥ 0.
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Thus, exG(x) is nonnegative and nondecreasing on [1, ∞). By hypothesis, we have
limx→∞ exg(x) = limx→0+ e1/xf (x) = 0. Thus, given ε > 0 arbitrary, there exists
M ≥ 1 such that exg(x) ≤ ε for all x ≥ M; therefore,

exG(x) ≤ ex

∫ ∞

x

εe−t dt = ε

also holds for all x ≥ M . Thus, the nonnegative nondecreasing function exG(x) sat-
isfies limx→∞ exG(x) = 0, so G is identically zero. Hence, g is also identically zero
on [1, ∞), and so is f .

Also solved by Michel Bataille, Elton Bojaxhiu & Enkel Hysnelaj, Robert Calcaterra, Omran
Kouba (Syria), Kee-Wai Lau (Hong Kong, China), Northwestern University Math Problem Solving
Group, and the proposer. There was one incomplete or incorrect solution.

2045. Proposed by Kenneth Levasseur and Nicholas Raymond (student), University of
Massachusetts Lowell, Lowell, MA.

Let n be a positive integer. For any base b (a positive integer greater than 1) consider
the set Rn,b consisting of all 2n nonnegative integers r whose base-b expansion has (at
most) n digits, each either 0 or 1. Given n > 1, for what bases b is Rn,b a complete
system of residues to the modulus 2n?

Solution by Michael Reid, University of Central Florida, Orlando, FL.
We prove that Rn,b is a complete set of residues modulo 2n if and only if b ≡ 2
(mod 4), i.e., if b is divisible by 2 but not by 4.

Assume first that Rn,b is a complete set of residues (CSR) modulo 2n. Consider the
primitive 2n-th root of unity ζ = exp(2πi/2n). Since Rn,b is a CSR, we have

(1 + ζ )
(
1 + ζ b

) (
1 + ζ b2

)
· · ·

(
1 + ζ bn−1

)
=

∑
ε0∈{0,1}

∑
ε1∈{0,1}

· · ·
∑

εn−1∈{0,1}
ζ ε0+ε1b+ε2b2+···+εn−1bn−1 =

∑
r∈Rn,b

ζ r

=
2n−1∑
t=0

ζ t = ζ 2n − 1

ζ − 1
= 0.

Thus, one of the factors in the product above must vanish, say 1 + ζ bk
with 0 ≤ k ≤

n − 1; thus, exp(2πibk/2n) = ζ bk = −1 = exp(πi), so bk ≡ 2n−1 (mod 2n). Since
n ≥ 2 by hypothesis, we must have bk ≡ 2n−1 ≡ 0 (mod 2); therefore, k ≥ 1, bk is
even, and hence so is b. Since Rn,b is a CSR, r = 0 is its only element in the class 0
(mod 2n); thus, the element bn−1 of Rn,b satisfies bn−1 �≡ 0 (mod 2n), hence b is not
divisible by 4 (for otherwise bn−1 would be divisible by 4n−1 = 22n−2, thus a fortiori
by 2n since n ≥ 2). We conclude that b ≡ 2 (mod 4).

Conversely, suppose b ≡ 2 (mod 4). Write b = 2c (with c an odd integer). By
uniqueness of base-b representations, Rn,b has cardinality exactly 2n. In order to show
that Rn,b is a CSR, it suffices to prove that Rn,b does not represent any residue class
modulo 2n more than once, which we presently prove by induction for all n ≥ 1.
Clearly, R1,b = {0, 1} is a CSR modulo 21, so the assertion holds for n = 1 (this is
true whether or not b ≡ 2 (mod 4)). Assume next that the statement holds for some
n ≥ 1, and let r, s ∈ Rn+1,b be congruent modulo 2n+1. By definition of Rn+1,b, the
numbers r, s have expressions r = ∑n

i=0 δib
i , s = ∑n

i=0 εib
i , with δi, εi ∈ {0, 1} for
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i = 0, 1, . . . , n. A fortiori, r ≡ s (mod 2n); since bn = 2ncn ≡ 0 (mod 2n), we have∑n−1
i=0 δib

i ≡ r ≡ s ≡ ∑n−1
i=0 εib

i (mod 2n). By the inductive hypothesis, the congru-
ence above implies δi = εi for 0 ≤ i ≤ n − 1. The congruence r ≡ s (mod 2n+1) now
gives 2ncnδn = bnδn ≡ bnεn = 2ncnεn (mod 2n+1), so cnδn ≡ cnεn (mod 2). Since
c is odd, cancellation gives δn ≡ εn (mod 2), and since δn, εn ∈ {0, 1}, we obtain
δn = εn. This completes the inductive proof that Rn,b represents no class modulo 2n

more than once for n ≥ 1. Hence, Rn,b is a CSR modulo 2n for all n > 1 and b ≡ 2
(mod 4).

Also solved by Robert Calcaterra, Joseph DiMuro, Dmitry Fleischman, Kyle Gatesman, Eugene
A. Herman, Laura Queipo (student) & José H. Nieto (Venezuela), Nicholas C. Singer, and the
proposer.

Answers

Solutions to the Quickies from page 152.

A1089. We construct such a function f . Let f (0) = 0.

• For x rational, 0 < |x| <
√

2 , let f (x) = 2/x.
• For x rational, |x| >

√
2, let f (x) = −2/x.

• For x irrational, |x| < 1, let f (x) = 1/x.
• For x irrational, |x| > 1, let f (x) = −1/x.

Note that f maps rational numbers to rational numbers, and irrational to irra-
tional. We have f (f (0)) = f (0) = 0 = −0. For rational x �= 0 we have f (f (x)) =
−2/(2/x) = −x, while for x irrational, f (f (x)) = −1/(1/x) = −x. Clearly, |f (x)| →
∞ as x → 0. For a �= 0, |f (x)| has two different sequential limits as x → a, namely
1/|a| and 2/|a|. Thus, f is discontinuous everywhere.

A1090. Assume that {an} = Zp − {0} for some p ≥ 3. A fortiori, by the recursive
definition of {an}, it is clear that 2 is a primitive element modulo p. In particular,
2p−1 ≡ 1 and 2(p−1)/2 ≡ −1 (mod p). If an = (p + 1)/2 holds for some n, then
an+1 ≡ 2an ≡ 2(p+1)/2 = 2 · 2(p−1)/2 ≡ −2 (mod p), and hence an+1 = p − 2. Con-
versely, if an+1 = p − 2, since 2 is primitive modulo p, we must have an ≡ (p + 1)/2
(mod p − 1), and so an = (p + 1)/2. Similarly, one sees that am+1 = (p + 1)/2 if and
only if am = p − 2. Since the sequence {an} includes the terms (p + 1)/2 and p − 2
by hypothesis, it must be purely periodic with range {(p + 1)/2, p − 2} = {an} =
Zp − {0}. Thus, this can only hold when p = 3. Reciprocally, it is immediate to verify
that p = 3 does indeed satisfy the required conditions.
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Brams, Steven J., and Mehmet S. Ismail, Making the rules of sports fairer, SIAM Review 60 (1)
(2018) 181–202.

, D. Marc Kilgour, and Walter Stromquist, Catch-Up: A rule that makes service sports
more competitive, American Mathematical Monthly 125 (9) (November 2018) 771–796. http://
as.nyu.edu/content/dam/nyu-as/faculty/documents/Competition%20in%20Service%20Sports.
pdf.

Isaksen, Aaron, Mehmet Ismail, Steven J. Brams, and Andy Nealen, Catch-Up: A game in
which the lead alternates, Game and Puzzle Design Journal 1 (2) (2015) 38–49. http://game.
engineering.nyu.edu/wp-content/uploads/2015/10/catch-up-a-game-in-which-the-
lead-alternates-2015.pdf. Online playable version at http://game.engineering.nyu.edu/projects/
catch-up/.

Many sports have rules that are not “fair,” in the sense that “they do not ensure that equally
skilled competitors have the same probability of winning.” In particular, rules for the order
of play in tie-breaking in soccer, American professional football, most racquet sports (except
tennis), and volleyball are unfair, in that they systematically advantage one of the two sides (e.g.,
in soccer, the side that kicks first in a shootout). Brams et al. urge adoption of a Catch-Up Rule:
A contestant who is behind after a round is “advantaged” for the next round. They compare
this rule to the Win-by-Two Rule and other rules. They show that the Catch-Up Rule is “fairer”
(except in tennis), generally strategy-proof, and does not change the probability of winning in
racquet sports or volleyball (but tends to increase the length of the game). Isaksen et al. offer a
simple but interesting game played with integers, called Catch-Up, and analyze it in part.

Suzuki, Jeff, Patently Mathematical: Picking Partners, Passwords, and Careers by the Numbers,
Johns Hopkins University Press, 2019; 283 pp, $34.95. ISBN 978-1-4214-2705-8.

A publicity editor must have picked the subtitle of this book, since it scarcely agrees with the
author’s announced theme: “Under what conditions should a device based on a mathematical
algorithm be patentable?” All of the following have been the subject of patents based mainly on
mathematics: indexing documents, search engine algorithms, distinguishing between images,
ranking attractiveness of photographs of people, rating potential compatibility of couples,
opening a browser window, evaluating security of a password, retaining customers, influencing
people, fitting medical devices to patients, compressing data, determining insurance premi-
ums, and encrypting data. A surprising amount of mathematics appears in the book: vectors,
matrices, logs, linear combinations, graphs with edge weighting, entropy, likelihood ratios,
simulated annealing, error-correcting codes, fractals, cellular automata, public-key encryp-
tion, modulo arithmetic, zero-knowledge proofs, elliptic curves, and projective coordinates.
Author Suzuki slickly exposits the mathematics involved, expresses mixed emotions about the
patents, and offers suggestions for patent policy. (The index does not do justice to the topics
in the book; and the book should have included a list of, and page numbers for, the patents
discussed.)

Math. Mag. 92 (2019) 159–160. doi:10.1080/0025570X.2019.1580087 c© Mathematical Association of America
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Lin, Thomas (ed.), The Prime Number Conspiracy: The Biggest Ideas in Math from Quanta,
MIT Press, 2018; xx+309 pp, $19.95(P). ISBN 978-0-262-53635-6.

Honner, Patrick, Unscrambling the hidden secrets of superpermutations, https://www.quanta-
magazine.org/unscrambling-the-hidden-secrets-of-superpermutations-20190116/.

Quanta Magazine is an online science magazine that vows not to “report on anything you might
actually find useful,” such as medical or technological breakthroughs. That leaves lots of room,
of course, for mathematics. The magazine, available at www.quantamagazine.org, is sponsored
by the Simons Foundation. This volume collects 37 articles from its first 5 years, out of the
324 so far on mathematical topics. The title refers to evidence that “primes seem to avoid being
followed [immediately] by another prime with the same final digit,” a feature reflected in the
prime assembly-line mechanism depicted on the book’s cover. But the volume is by no means
limited to articles about primes. Instead, it features stories also about other contemporary math-
ematics, including discoveries about proofs, the nature of mathematical thinking, connections
with computing, new findings about infinity, and the lives of mathematicians. Fewer than half
a dozen equations appear. This is an exciting book, by first-rate expositors, of up-to-the-minute
developments in mathematics. The more-recent article by Honner is a perfect example of what
to expect. (Quanta has also published a companion volume, Alice and Bob Meet the Wall of
Fire: The Biggest Ideas in Science.)

Cubitt, Toby S., David Pérez-Garcı́a, and Michael Wolf, The un(solv)able problem, Scientific
American 319 (4) (October 2018) 29–37.

The spectral gap problem in physics asks whether there are discrete “gaps” between energy
levels in a material, and the answer has consequences for quantum phase transitions of the
material. The Yang-Mills Millennial Prize Problem in mathematics deals with a similar question
about a “mass gap.” The authors were able to show that the spectral gap problem is undecidable
in general, by encoding many copies of the same Turing machine into the quantum ground
state of a material; the ground state energy rises if the Turing machines halt. So the proof
rests on the undecidability of the halting problem. Curiously, the proof also uses aperiodic
tiles. Reinterpreting back into the physical world: “[E]ven a perfect, complete description of
the microscopic interactions between a material’s particles is not always enough to deduce its
macroscopic properties.”

Savage, Neil, Always out of balance, Communications of the Association for Computing
Machinery 61 (4) (April 2018) 12–14.

More negative results! John Nash showed that every finite non-cooperative game has a Nash
equilibrium, a state in which no player can do better by changing strategy. Unfortunately,
there is no easy (polynomial-time) way to find Nash equilibria in general, or even approximate
them.

Pukelsheim, Friedrich, Proportional Representation: Apportionment Methods and Their Appli-
cations, 2nd ed., Springer, 2017; xxvii+342 pp, $79.99(P). ISBN 978-3-319-64706-7.

In 2018, Democrats received 54% of the votes for legislators in Wisconsin but won only 36 of 99
seats in its lower house. Part of the mismatch was due to severe gerrymandering and part to geo-
graphical concentration of voters of like mind (leading to “wasted votes”). Author Pukelsheim
starts from rules for rounding numbers, describes various divisor and quota methods, investi-
gates biases introduced, explores apportionment criteria, discusses practical implementations,
and details the method of double proportionality (apportioning seats to districts proportionally
to population figures and to parties proportionally to vote counts). Use of that method, success-
fully promoted by Pukelsheim for use in several parts of the world, would have ameliorated
the unfairness in Wisconsin. New to the second edition of the book is a 20-page “Biographical
Digest” about individuals who contributed to apportionment methods. Though the book illus-
trates the methods with concrete real-life examples, it is not for non-mathematicians; a shorter
companion textbook (but without exercises), Sitzzuteilungsmethoden: Ein Kompaktkurs. . . , is
less mathematically demanding. (Disclosure: Author Pukelsheim is a personal friend who spon-
sored me on several occasions as a guest professor at the University of Augsburg, and I offered
him comments for the first edition of the book.)

https://www.quanta-
magazine.org/unscrambling-the-hidden-secrets-of-superpermutations-20190116/
www.quantamagazine.org
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